Volume 49 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
XU Yang-yang, ZHU Hui-min, LI Chen, PAN Hui, FENG Jun-feng. Study on preparation of methyl levulinate by directional alcoholysis of bamboo biomass[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1889-1897. doi: 10.19906/j.cnki.JFCT.2021069
Citation: XU Yang-yang, ZHU Hui-min, LI Chen, PAN Hui, FENG Jun-feng. Study on preparation of methyl levulinate by directional alcoholysis of bamboo biomass[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1889-1897. doi: 10.19906/j.cnki.JFCT.2021069

Study on preparation of methyl levulinate by directional alcoholysis of bamboo biomass

doi: 10.19906/j.cnki.JFCT.2021069
Funds:  The project was supported by Jiangsu Student's Platform for Innovation Training Program (SPITP 201910298012Z),Natural Science Fund for Colleges and Universities in Jiangsu Province (20KJB220010)
  • Received Date: 2021-04-13
  • Rev Recd Date: 2021-06-10
  • Available Online: 2021-08-10
  • Publish Date: 2021-12-29
  • The process of directional alcoholysis of cellulose and hemicellulose in bamboo was investigated using solid acid as catalyst and dialkoxymethane/lower alcohol as co-solvent. By adjusting the reaction conditions (composition and ratio of the co-solvent, the type and amount of solid acid catalyst, reaction temperature and time), the optimal reaction conditions were obtained (dimethoxymethane/methanol with a mass ratio of 5 g/15 g, the solid acid catalyst silicotungstic acid 0.002 mol, reaction time 120 min, and reaction temperature 200 ℃), the conversion of bamboo was 81.53%, and the yield of methyl levulinate was 28.39%. At the same time, the conversion process of a variety of biomass model compounds (xylose, glucose, furfural, 5-hydroxymethyl furfural, pentosan and microcrystalline cellulose) was studied in detail, then the fundamental mechanism of directional alcoholysis conversion of cellulose and hemicellulose to produce methyl levulinate was put forward according to the detection results of intermediate products in the reaction process.
  • loading
  • [1]
    ZHANG T. Taking on all of the biomass for conversion[J]. Science,2020,367:1305−1306. doi: 10.1126/science.abb1463
    [2]
    ZHANG Z, SONG J, HAN B. Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids[J]. Chem Rev,2017,117(10):6834−6880. doi: 10.1021/acs.chemrev.6b00457
    [3]
    ENNAERT T, VAN AELST J, DIJKMANS J, DE CLERCQ R, SCHUTYSER W, DUSSELIER M, SELS B. Potential and challenges of zeolite chemistry in the catalytic conversion of biomass[J]. Chem Soc Rev,2016,45(3):584−611. doi: 10.1039/C5CS00859J
    [4]
    CHEN Y W, LEE H V. Recent progress in homogeneous Lewis acid catalysts for the transformation of hemicellulose and cellulose into valuable chemicals, fuels, and nanocellulose[J]. Rev Chem Eng,2020,36(2):215−235. doi: 10.1515/revce-2017-0071
    [5]
    HAN Y, YE L, GU X, ZHU P, LU X. Lignin-based solid acid catalyst for the conversion of cellulose to levulinic acid using γ-valerolactone as solvent[J]. Ind Crop Prod,2019,127:88−93. doi: 10.1016/j.indcrop.2018.10.058
    [6]
    杨佳鑫, 司传领, 刘坤, 刘华玉, 李晓云, 梁敏. 木质纤维生物质制备乙酰丙酸及其应用综述[J]. 林业工程学报,2020,5(5):21−27.

    YANG Jia-xin, SI Chuan-ling, LIU Kun, LIU Hua-yu, LI Xiao-yun, LIANG Min. Production of levulinic acid from lignocellulosic biomass and application[J]. J Forestry Eng,2020,5(5):21−27.
    [7]
    FENG J, ZHANG L, JIANG J, HSE C, SHUPE T, PAN H. Directional synergistic conversion of lignocellulosic biomass with matching-solvents for added-value chemicals[J]. Green Chem,2019,21(18):4951−4957. doi: 10.1039/C9GC02365H
    [8]
    ZHU S, GUO J, WANG X, WANG J, FAN W. Alcoholysis: a promising technology for conversion of lignocellulose and platform chemicals[J]. ChemSusChem,2017,10(12):2547−2559. doi: 10.1002/cssc.201700597
    [9]
    MORAIS A, MATUCHAKI M, ANDREAUS J, BOGEL-LUKASIK R. A green and efficient approach to selective conversion of xylose and biomass hemicellulose into furfural in aqueous media using high-pressure CO2 as a sustainable catalyst[J]. Green Chem,2016,18(10):2985−2994. doi: 10.1039/C6GC00043F
    [10]
    孙娇, 王娅莉, 解新安, 黎巍, 李璐, 李雁, 樊荻, 魏星. 纤维素在亚/超临界甲醇中液化条件对主要化合物产物的影响[J]. 燃料化学学报,2017,45:660−668. doi: 10.3969/j.issn.0253-2409.2017.06.003

    SUN Jiao, WANG Ya-li, XIE Xin-an, LI Wei, LI Lu, LI Yan, FAN Di, WEI Xing. Effect of liquefaction parameters of cornstalk cellulose in sub-supercritical methanol on dominant chemical products[J]. J Fuel Chem Technol,2017,45:660−668. doi: 10.3969/j.issn.0253-2409.2017.06.003
    [11]
    于杰, 王景芸, 王震, 周明东, 王海彦. 复合分子筛的合成及其在纤维素水解反应中的应用[J]. 燃料化学学报,2018,46(4):419−426. doi: 10.3969/j.issn.0253-2409.2018.04.007

    YU Jie, WANG Jing-yun, WANG Zhen, ZHOU Ming-dong, WANG Hai-yan. Synthesis of composite zeolites and their performance in hydrolysis of cellulose[J]. J Fuel Chem Technol,2018,46(4):419−426. doi: 10.3969/j.issn.0253-2409.2018.04.007
    [12]
    HEDA J, NPPHADKAR P, BOKADE V. Efficient synergetic combination of H-USY and SnO2 for direct conversion of glucose into ethyl levulinate (biofuel additive)[J]. Energy Fuels,2019,33(3):2319−2327. doi: 10.1021/acs.EnergyFuels.8b04395
    [13]
    HUANGY B, YANG T, LIN Y T, PAN H. Facile and high-yield synthesis of methyl levulinate from cellulose[J]. Green Chem,2018,20(6):1323−1334. doi: 10.1039/C7GC02883K
    [14]
    LAPPALAINEN K, DONG Y. Simultaneous production of furfural and levulinic acid from pine sawdust via acid-catalysed mechanical depolymerization and microwave irradiation[J]. Biomass Bioenergy,2019,123:159−165. doi: 10.1016/j.biombioe.2019.02.017
    [15]
    MIKA L, CSEFALVAY E, NEMETH A. Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability[J]. Chem Rev,2018,118(2):505−613. doi: 10.1021/acs.chemrev.7b00395
    [16]
    LI X, LU X, NIE S, LIANG M, YU Z, DUAN B, SI C Efficient catalytic production of biomass-derived levulinic acid over phosphotungstic acid in deep eutectic solvent[J]. Ind Crop Prod, 2020, 145, 112−154.
    [17]
    NEGAHDAR L, DELIDOVICH I, PALKOVITS R. Aqueous-phase hydrolysis of cellulose and hemicelluloses over molecular acidic catalysts: Insights into the kinetics and reaction mechanism[J]. Appl Catal B: Environ,2016,184:285−298. doi: 10.1016/j.apcatb.2015.11.039
    [18]
    FENG S, WEI R, LEITCH M, XU C. Comparative study on lignocellulose liquefaction in water, ethanol, and water/ethanol mixture: Roles of ethanol and water[J]. Energy,2018,155:234−241. doi: 10.1016/j.energy.2018.05.023
    [19]
    DU H, MA X, YAN P, JIANG M, ZHAO Z, ZHANG Z C. Catalytic furfural hydrogenation to furfuryl alcohol over Cu/SiO2 catalysts: A comparative study of the preparation methods[J]. Fuel Process Technol,2019,193:221−231. doi: 10.1016/j.fuproc.2019.05.003
    [20]
    SWEYGERS N, ALEWATERS N, DEWIL R, APPELS L. Microwave effects in the dilute acid hydrolysis of cellulose to 5-hydroxymethylfurfural[J]. Sci Rep-UK,2018,8(1):1−11.
    [21]
    FENG J, TONG L, ZHU Y, JIANG J, HSE C, PAN H. Efficient utilization and conversion of whole components in waste biomass with one-pot-oriented liquefaction[J]. ACS Sustainable Chem Eng,2019,7:18142−18152. doi: 10.1021/acssuschemeng.9b05272
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (327) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return