Volume 50 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
ZHANG Kai-wen, LIU Xin-yao, ZHANG Lei, QING Shao-jun, ZHANG Cai-shun, LIU Ya-jie, GAO Zhi-xian. Cu-Zn-Al spinel catalyst for hydrogen production from methanol steam reforming[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 494-502. doi: 10.19906/j.cnki.JFCT.2021082
Citation: ZHANG Kai-wen, LIU Xin-yao, ZHANG Lei, QING Shao-jun, ZHANG Cai-shun, LIU Ya-jie, GAO Zhi-xian. Cu-Zn-Al spinel catalyst for hydrogen production from methanol steam reforming[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 494-502. doi: 10.19906/j.cnki.JFCT.2021082

Cu-Zn-Al spinel catalyst for hydrogen production from methanol steam reforming

doi: 10.19906/j.cnki.JFCT.2021082
Funds:  The project was supported by the National Natural Science Foundation of China (21673270, 21763018), Scientific research funds project of Liaoning education department (L2019038), the project of the Natural Science Fund in Liaoning Province (2019-MS-221)
  • Received Date: 2021-08-10
  • Rev Recd Date: 2021-09-10
  • Available Online: 2021-10-08
  • Publish Date: 2022-04-26
  • The Cu-Zn-Al ternary spinel catalysts were synthesized by the wet ball milling method using copper nitrate, zinc nitrate, pseudoboehmite and citric acid as the raw materials. TG-DTA, XRD, N2 physical adsorption, H2-TPR, XPS and other characterization methods were used to study the effects of different Cu/Zn/Al molar ratios on the crystal phase composition, specific surface area, reduction performance and surface properties of the catalysts, and the catalytic performances of the catalysts were investigated by methanol steam reforming (MSR) for hydrogen production. The results indicate that comparing with the binary Cu-Al spinel, Cu-Zn-Al ternary spinel catalysts have high crystallinity, large surface area and are difficult to be reduced, which show improved catalytic performance and totally different sustained release behavior. The Cu-Zn-Al spinel catalyst with Cu∶Zn∶Al = 0.8∶0.2∶2.5 (molar ratio) exhibited the highest stable catalytic activity in MSR under a reaction temperature of 265 ℃, water/methanol ratio of 2 and mass space velocity of 2.25 h−1. The findings of this work might be served as basic data for further research of such ternary spinel catalysts.
  • loading
  • [1]
    HOLM T, BORSBOOM H T, HERRERA O, MERIDA W. Hydrogen costs from water electrolysis at high temperature and pressure[J]. Energ Convers Manage,2021,237:114106−114120. doi: 10.1016/j.enconman.2021.114106
    [2]
    KIM S H, KUMAR G, CHEN W H, KHANAL S K. Renewable hydrogen production from biomass and wastes[J]. Bioresource Technol,2021,331:125024−125029. doi: 10.1016/j.biortech.2021.125024
    [3]
    QIAO W J, YANG S Q, ZHANG L, TIAN Y, WANG H H, ZHANG C S, GAO Z X. Performance of Cu-Ce/M-Al (M = Mg, Ni, Co, Zn) hydrotalcite derived catalysts for hydrogen production from methanol steam reforming[J]. Int J Energy Res,2021,45:12773−12784. doi: 10.1002/er.6610
    [4]
    庆绍军, 侯晓宁, 李林东, 张磊, 陈凯华, 高志贤, 樊卫斌. 甲醇制氢应用于氢燃料电池车的可行性及其发展前景[J]. 能源与节能,2019,2:62−65. doi: 10.3969/j.issn.2095-0802.2019.06.027

    QING Shao-jun, HOU Xiao-ning, LI Lin-dong, ZHANG Lei, CHEN Kai-hua, GAO Zhi-xian, FAN Wei-bin. Application feasibility and development prospect of methanol to hydrogen technology for hydrogen fuel cell vehicle[J]. Energy Energy Conser,2019,2:62−65. doi: 10.3969/j.issn.2095-0802.2019.06.027
    [5]
    YANG S Q, ZHOU F, LIU Y J, ZHANG L, CHEN Y, WANG H H, TIAN Y, ZHANG C S, LIU D S. Morphology effect of ceria on the performance of CuO/CeO2 catalysts for hydrogen production by methanol steam reforming[J]. Int J Hydrogen Energy,2019,44:7252−7261. doi: 10.1016/j.ijhydene.2019.01.254
    [6]
    MIERCZYNSKI P, MOSINSKA M, MANIUKIEWICZ W, NOWOSIELSKA M, CZYLKOWSKA A, SZYNKOWSKA M I. Oxy-steam reforming of methanol on copper catalysts[J]. React Kinet Mech Catal,2019,127:857−874. doi: 10.1007/s11144-019-01609-6
    [7]
    XI H J, HOU X N, LIU Y J, QING S J, GAO Z X. Cu-Al spinel oxide as an efficient catalyst for methanol steam reforming[J]. Angew Chem Int Ed,2014,53:11886−11889. doi: 10.1002/anie.201405213
    [8]
    刘雅杰, 庆绍军, 侯晓宁, 张磊, 高志贤, 相宏伟. Cu-Al尖晶石的合成及非等温生成动力学分析[J]. 燃料化学学报,2020,48(3):338−348. doi: 10.3969/j.issn.0253-2409.2020.03.010

    LIU Ya-jie, QING Shao-jun, HOU Xiao-ning, ZHANG Lei, GAO Zhi-xian, XIANG Hong-wei. Synthesis of Cu-Al spinels and its non-isothermal formation kinetics analysis[J]. J Fuel Chem Technol,2020,48(3):338−348. doi: 10.3969/j.issn.0253-2409.2020.03.010
    [9]
    覃发玠, 刘雅杰, 庆绍军, 侯晓宁, 高志贤. 甲醇制氢铜铝尖晶石缓释催化剂的研究—不同铜源合成的影响[J]. 燃料化学学报,2017,45(12):1481−1488. doi: 10.3969/j.issn.0253-2409.2017.12.010

    QIN Fa-jie, LIU Ya-jie, QING Shao-jun, HOU Xiao-ning, GAO Zhi-xin. Cu-Al spinel as a sustained release catalyst for H2 production from methanol steam reforming: Effects of different copper sources[J]. J Fuel Chem Technol,2017,45(12):1481−1488. doi: 10.3969/j.issn.0253-2409.2017.12.010
    [10]
    AREAN C O, VINUELA DIEZ J S, GONZALEZ J M, ARJONA A M. Crystal chemistry of CuxZn1−xAl2O4 spinels[J]. Mater Chem,1981,6:165. doi: 10.1016/0390-6035(81)90039-0
    [11]
    NESTOUR A L, GAUDON M, VILLENEUVE G, DATURI M, ANDRIESSEN R, DEMOURGUES A. Defects in divided zinc-copper aluminate spinels: Structural features and optical absorption properties[J]. Inorg Chem,2007,46:4067−4078. doi: 10.1021/ic0624064
    [12]
    ANAND G T, KENNEDY L J. One-pot microwave combustion synthesis of porous Zn1bzx xCuxAl2O4 (0 ≤ x ≤ 0.5) spinel nanostructures[J]. J Nanosci Nanotechnol,2013,4:3096−3103.
    [13]
    HOU X N, QING S J, LIU Y J, ZHANG L, ZHANG C S, FENG G, WANG X, GAO Z X, QIN Y. Cu1−xMgxAl3 spinel solid solution as a sustained release catalyst: One-pot green synthesis and catalytic performance in methanol steam reforming[J]. Fuel,2021,284:119041−119051. doi: 10.1016/j.fuel.2020.119041
    [14]
    LIU Y J, QING S J, HOU X N, QIN F J, WANG X, GAO Z X, XIANG H W. Cu-Ni-Al spinel oxide as an efficient durable catalyst for methanol steam reforming[J]. ChemCatChem,2018,10:5698−5706. doi: 10.1002/cctc.201801472
    [15]
    TIKHOV S F, VALEEV K R, SALANOV A N, CHEREPANOVA S V, BOLDYREVA N N, ZAIKOVSKII V I, SADYKOV V A, DUDINA D V, LOMOVSKY O I, ROMANENKOV V E. Phase formation during high-energy ball milling of the 33Al-45Cu-22Fe (at.%) powder mixture[J]. J Alloy Compd,2018,736:289−296. doi: 10.1016/j.jallcom.2017.11.100
    [16]
    闫晓峰, 高文桂, 毛文硕, 纳薇, 霍海辉, 常帅. 溶胶-凝胶法制备Cu-ZnO-ZrO2催化剂: 柠檬酸用量对催化剂性能的影响[J]. 化工进展,2020,39(10):4032−4040.

    YAN Xiao-feng, GAO Wen-gui, MAO Wen-shuo, NA Wei, HUO Hai-hui, CHANG Shuai. Preparation of Cu-ZnO-ZrO2 catalyst by sol-gel method: Effect of citric acid content on catalyst performance[J]. Chem Ind Eng Progress,2020,39(10):4032−4040.
    [17]
    HOU X N, QING S J, LIU Y J, LI L D, GAO Z X, QIN Y. Enhancing effect of MgO modification of Cu-Al spinel oxide catalyst for methanol steam reforming[J]. Int J Hydrogen Energy,2020,45:477−489. doi: 10.1016/j.ijhydene.2019.10.164
    [18]
    MIERCZYNSKI P, VASILEV K, MIERCZYNSKA A, MANIUKIEWICZ W, MANIECKI T. The effect of ZnAl2O4 on the performance of Cu/ZnxAlyOx+1.5y supported catalysts in steam reforming of methanol[J]. Top Catal,2013,56:1015−1025. doi: 10.1007/s11244-013-0065-7
    [19]
    肖国鹏, 乔韦军, 张磊, 庆绍军, 张财顺, 高志贤. 钙钛矿型甲醇水蒸气重整制氢催化材料的研究[J]. 化学学报,2021,79(1):100−107. doi: 10.6023/A20080374

    XIAO Guo-peng, QIAO Wei-jun, ZHANG Lei, QING Shao-jun, ZHANG Cai-shun, GAO Zhi-xian. Study on hydrogen production catalytic materials for perovskite methanol steam reforming[J]. Acta Chim Sinica,2021,79(1):100−107. doi: 10.6023/A20080374
    [20]
    HUANG Y H, WANG S F, TSAI A P, KAMEOKA S. Reduction behaviors and catalytic properties for methanol steam reforming of Cu-based spinel compounds CuX2O4 (X = Fe, Mn, Al, La)[J]. Ceram Int,2014,40:4541−4551. doi: 10.1016/j.ceramint.2013.08.130
    [21]
    LI G J, GU C T, ZHU W B, WANG X F, YUAN X F, CUI Z J, WANG H L, GAO Z X. Hydrogen production from methanol decomposition using Cu-Al spinel catalysts[J]. J Clean Prod,2018,183:415−423. doi: 10.1016/j.jclepro.2018.02.088
    [22]
    LIU Y J, QING S J, HOU X N, QIN F J, WANG X, GAO Z X. Temperature dependence of Cu-Al spinel formation and its catalytic performance in methanol steam reforming[J]. Catal Sci Technol,2017,7:5069−5078. doi: 10.1039/C7CY01236E
    [23]
    焦桐, 许雪莲, 张磊, 翁幼云, 翁玉冰, 高志贤. CuO/CeO2-ZrO2/SiC整体催化剂催化甲醇水蒸气重整制氢的研究[J]. 化学学报,2021,79(4):513−519. doi: 10.6023/A20120562

    JIAO Tong, XU Xue-lian, ZHANG Lei, WENG You-yun, WENG Yu-bing, GAO Zhi-xian. Research on CuO/CeO2-ZrO2/SiC monolithic catalysts for hydrogen production by methanol steam reforming[J]. Acta Chim Sin,2021,79(4):513−519. doi: 10.6023/A20120562
    [24]
    HOU X N, QIN F J, QING S J, LIU Y J, LI L D, GAO Z X, QIN Y. Probing the existing state of Cu(II) in Cu-Al spinel catalyst using N2O decomposition reaction with the aid of conventional characterizations[J]. Catal Sci Technol,2019,9:2993−3001. doi: 10.1039/C9CY00563C
    [25]
    AKIKA F Z, BENAMIRA M, LAHMAR H, TRARI M, AVRAMOVA I, SUZER S. Structural and optical properties of Cu-doped ZnAl2O4 and its application as photocatalyst for Cr(VI) reduction under sunlight[J]. Surf Interfaces,2020,18:100406−100416. doi: 10.1016/j.surfin.2019.100406
    [26]
    WAGNER C D, DAVIS L E, ZELLER M V, TAYLOR J A, RAYMOND R H, GALE L H. Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis[J]. Surf Interface Anal,1981,3(5):211−225. doi: 10.1002/sia.740030506
    [27]
    郗宏娟, 李光俊, 庆绍军, 侯晓宁, 赵金珍, 刘雅杰, 高志贤. 固相法合成铜铝尖晶石催化甲醇重整反应[J]. 燃料化学学报,2013,41(8):998−1002. doi: 10.3969/j.issn.0253-2409.2013.08.015

    XI Hong-juan, LI Guang-jun, QING Shao-jun, HOU Xiao-ning, ZHAO Jin-zhen, LIU Ya-jie, GAO Zhi-xian. Cu-Al spinel catalyst prepared by solid phase method for methanol steam reforming[J]. J Fuel Chem Technol,2013,41(8):998−1002. doi: 10.3969/j.issn.0253-2409.2013.08.015
    [28]
    QING S J, HOU X N, LIU Y J, XI H J, WANG X, CHEN C M, WU Z W, GAO Z X. A novel supported Cu catalyst with highly dispersed copper nanoparticles and its remarkable catalytic performance in methanol decomposition[J]. RSC Adv,2014,4:52008−52011. doi: 10.1039/C4RA10101D
    [29]
    庆绍军, 侯晓宁, 刘雅杰, 王磊, 李林东, 高志贤. Cu-Ni-Al尖晶石催化甲醇水蒸气重整制氢性能的研究[J]. 燃料化学学报,2018,46(10):1210−1217. doi: 10.3969/j.issn.0253-2409.2018.10.008

    QING Shao-jun, HOU Xiao-ning, LIU Ya-jie, WANG Lei, LI Lin-dong, GAO Zhi-xian. Catalytic performance of Cu-Ni-Al spinel for methanol steam reforming to hydrogen[J]. J Fuel Chem Technol,2018,46(10):1210−1217. doi: 10.3969/j.issn.0253-2409.2018.10.008
    [30]
    QING S J, HOU X N, LIU Y J, LI L D, WANG X, GAO Z X, FAN W B. Strategic use of CuAlO2 as a sustained release catalyst for production of hydrogen from methanol steam reforming[J]. Chem Commun,2018,54:12242−12245. doi: 10.1039/C8CC06600K
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (566) PDF downloads(80) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return