Volume 50 Issue 7
Aug.  2022
Turn off MathJax
Article Contents
FENG Xu, LIN Yu, ZHANG Cai-shun, HAN Jiao, QING Shao-jun, ZHANG Lei, GAO Zhi-xian, GUAN Guo-qing. Effects of hydrothermal reaction temperatures on the performance of CuO/CeO2 catalyst for hydrogen production from steam reforming methanol[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 832-840. doi: 10.19906/j.cnki.JFCT.2021096
Citation: FENG Xu, LIN Yu, ZHANG Cai-shun, HAN Jiao, QING Shao-jun, ZHANG Lei, GAO Zhi-xian, GUAN Guo-qing. Effects of hydrothermal reaction temperatures on the performance of CuO/CeO2 catalyst for hydrogen production from steam reforming methanol[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 832-840. doi: 10.19906/j.cnki.JFCT.2021096

Effects of hydrothermal reaction temperatures on the performance of CuO/CeO2 catalyst for hydrogen production from steam reforming methanol

doi: 10.19906/j.cnki.JFCT.2021096
Funds:  The project was supported by the National Natural Science Foundation of China (21673270), Scientific Research Funds Project of Liaoning Education Department (L2019038) and the Project of the National Science Fund in Liaoning Province (2019-MS-221)
  • Received Date: 2021-09-29
  • Accepted Date: 2021-12-13
  • Rev Recd Date: 2021-12-13
  • Available Online: 2022-01-14
  • Publish Date: 2022-08-01
  • Using cerium nitrate as the source material and urea as the precipitant, nanometer CeO2 carrier was prepared by hydrothermal method, and the microstructure of CeO2 carrier was controlled by changing the hydrothermal reaction temperature. Then the CuO/CeO2 catalytic material was prepared by loading CuO on the CeO2 carrier and evaluated in methanol steam reforming for hydrogen production. Based on the characterization data of low temperature nitrogen adsorption, XRD, H2-TPR and XPS, the effects of hydrothermal reaction temperature on the microstructure of CeO2, the structure of CuO/CeO2 catalytic material and the performance of methanol steam reforming were investigated. The results show that the nanometer CeO2 support prepared at 180 ℃ has a cubic fluorite structure. After loading CuO onto the CeO2, the obtained CuO/CeO2 catalyst exhibits better catalytic activity due to its stronger Cu-Ce interaction, lower reduction temperature of Cu species in the surface, and more oxygen vacancies on the surface of the catalyst. When the reaction temperature is 280 ℃, the molar ratio of water to alcohol (W/M) is 1.2, and the space velocity of methanol vapor gas (GHSV) is 800 h− 1, the methanol conversion rate can reach 91.0%, the mole fraction of CO in reforming gas is 1.29%.
  • loading
  • [1]
    HARVEY H J M. Hydrogen energy production using manganese/semiconductor system inspired by photosynthesis[J]. Int J Hydrogen Energy,2017,42(12):8530−8538. doi: 10.1016/j.ijhydene.2017.01.100
    [2]
    闫月君, 刘启斌, 隋军, 金红光. 甲醇水蒸气催化重整制氢技术研究进展[J]. 化工学报,2012,31(7):1468−1476.

    YAN Yue-jun, LIU Qi-bin, SUI Jun, JIN Hong-guang. Research progress of hydrogen production technology by methanol steam catalytic reforming[J]. Acta Chim Sin,2012,31(7):1468−1476.
    [3]
    THOMAS L R, KRUMPELT M, SHYMAA A, ROCKY K, KUNG H H. Characterization of CuO/ZnO under oxidizing conditions for the oxidative methanol reforming reaction[J]. J Mol Catal A: Chem,2000,162(1):275−285.
    [4]
    LIN L L, ZHENG G Y, ZHOU W, WEN X D, SHI C, MA D. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts[J]. Nature,2017,544(7648):80−83. doi: 10.1038/nature21672
    [5]
    AGARWAL S, ZHU X, HENSEN E J M, MOJET B L, LEFFERTS L. Surface-dependence of defect chemistry of nanostructured ceria[J]. J Phys Chem C, 2015, 119(22): 150507121028006.
    [6]
    刘玉娟, 许骥, 佟宇飞, 张娜, 张磊, 刘道胜, 韩蛟, 张财顺. 氧化铈纳米材料合成方法的研究进展[J]. 辽宁石油化工大学学报,2017,37(5):8−12+37. doi: 10.3969/j.issn.1672-6952.2017.05.002

    LIU Yu-juan, XU Ji, DONG Yu-fei, ZHANG Na, ZHANG Lei, LIU Dao-sheng, HAN Jiao, ZHANG Cai-shun. Research Progress on synthesis methods of ceria nano materials[J]. J Liaoning Univ Pet Chem Technol,2017,37(5):8−12+37. doi: 10.3969/j.issn.1672-6952.2017.05.002
    [7]
    SAMAI B, SARKAR S, CHALL S, RAKSHIT S, BHATTACHARYA S C. Polymer-fabricated synthesis of cerium oxide nanoparticles and applications as a green catalyst towards multicomponent transformation with size-dependent activity studies[J]. Crystengcomm,2016,18(40):7873−7882. doi: 10.1039/C6CE01104G
    [8]
    CHEN C Q, ZHAN Y Y, ZHOU J K, LI D L, ZHANG Y J, LIN X Y, JIANG L L, ZHENG Q. Cu/CeO2 Catalyst for Water-Gas Shift Reaction: Effect of CeO2 Pretreatment[J]. Chemphyschem,2018,12(19):1448−1455.
    [9]
    LIU Y Y, TAKASHI H, TATSUO T, KUNIO S, SATOSHI H, KAZUHISA M, RYUJI S, TOMOKO I M, KUMAGAI. Steam reforming of methanol over Cu/CeO2 catalysts studied in comparison with Cu/ZnO and Cu/Zn(Al)O catalysts[J]. Top Catal,2003,22(3-4):205−213.
    [10]
    GONZALO Á, FRANCISCO G, PAULO A. CuO and CeO2 catalysts supported on Al2O3, ZrO2, and SiO2 in the oxidation of CO at low temperature[J]. Appl Catal A: Gen,2008,343(1):16−24.
    [11]
    CAMARA A L, CHANSAI S, HARDACRE C, MARTINEZ-ARIAS A. The water-gas shift reaction over CeO2/CuO: Operando SSITKA-DRIFTS-mass spectrometry study of low temperature mechanism[J]. Int J Hydrog Energy,2014,39(8):4095−4101. doi: 10.1016/j.ijhydene.2013.05.087
    [12]
    CHEN S Q, LI L P, HU W B, HUANG X S, LI Q, XU Y, ZUO Y, LI G S. Anchoring High-Concentration Oxygen Vacancies at Interfaces of CeO2-x/Cu toward Enhanced Activity for Preferential CO Oxidation[J]. ACS Appl Mater Inter,2015,7(14):22999−23007.
    [13]
    MAI H X, SUN L D, ZHANG Y W, SI R, FENG W, ZHANG H P, LIU H C, YAN C H. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes[J]. J Chen Phys,2006,109(51):24380−24385.
    [14]
    ZHOU K B, YANG Z Q, YANG S. Highly reducible CeO2 nanotubes[J]. ChemInform,2007,38(24):1215−1217.
    [15]
    刘玉娟, 王东哲, 张磊, 王宏浩, 陈琳, 刘道胜, 韩蛟, 张财顺. 载体焙烧气氛对甲醇水蒸气重整制氢CuO/CeO2催化剂的影响[J]. 燃料化学学报,2018,46(8):992−999. doi: 10.3969/j.issn.0253-2409.2018.08.011

    LIU Yu-juan, WANG Dong-zhe, ZHANG Lei, WANG Hong-hao, CHEN Lin, LIU Dao-sheng, HAN Jiao, ZHANG Cai-shun. Effect of impregnation sequence of Ce on the performance of Cu/Zn Al hydrotalcite derived catalyst for hydrogen production by methanol steam reforming effect of carrier calcination atmosphere on CuO/CeO2 Catalyst for hydrogen production by methanol steam reforming[J]. J Fuel Chem Technol,2018,46(8):992−999. doi: 10.3969/j.issn.0253-2409.2018.08.011
    [16]
    杨淑倩, 张娜, 贺建平, 张磊, 王宏浩, 白金, 张健, 刘道胜, 杨占旭. Ce的浸渍顺序对Cu/Zn-Al水滑石衍生催化剂用于甲醇水蒸气重整制氢性能的影响[J]. 燃料化学学报,2018,46(4):479−488. doi: 10.3969/j.issn.0253-2409.2018.04.014

    YANG Shu-qian, ZHANG Na, HE Jian-ping, ZHANG Lei, WANG Hong-hao, BAI Jin, ZHANG Jian, LIU Dao-sheng, YANG Zhan-xu. Effect of impregnation sequence of Ce on the performance of Cu/Zn Al hydrotalcite derived catalyst for hydrogen production from methanol steam reforming[J]. J Fuel Chem Technol,2018,46(4):479−488. doi: 10.3969/j.issn.0253-2409.2018.04.014
    [17]
    GUO X L, ZHOU R X. A new insight into morphology effect of ceria on CuO/CeO2 catalysts for CO selective oxidation in hydrogen-rich gas[J]. Catal Sci Technol,2016,6(11):3862−3871. doi: 10.1039/C5CY01816A
    [18]
    LUO M F, MA J M, LU J Q, SONG Y J, WANG Y J. High-surface area CuO-CeO2 catalysts prepared by a surfactant-templated method for low-temperature CO oxidation[J]. J Catal,2007,246(1):52−59. doi: 10.1016/j.jcat.2006.11.021
    [19]
    王金果, 陈菲菲, 曹锋雷, 卞振锋. 多孔单晶CeO2空壳球的制备及其CO催化氧化性能研究[J]. 上海师范大学学报(自然科学版), 2013, 42(3): 288–292.

    WANG Jin-guo, CHEN Fei-fei, CAO Feng-lei, BIAN Zhen-feng. Preparation of porous single crystal CeO2 hollow shell spheres and their catalytic oxidation properties for CO[J] J Shanghai Norm Univ, 2013, 42(3): 288–292.
    [20]
    FRANCO F, ARANGO-DIAZ A, STORARO L, RODRIGUEZ C E, MORETTI, CECILIA. CuO-CeO2 supported on montmorillonite-derived porous clay heterostructures (PCH) for preferential CO oxidation in H2-rich stream[J]. Catal Today,2015,253:126−136. doi: 10.1016/j.cattod.2015.01.040
    [21]
    赵艳娜, 姬定西. 纳米CeO2/水性聚氨酯复合材料的制备及性能[J]. 化工进展,2017,36(12):4501−4507.

    ZHAO Yan-na, NI Ding-xi. Preparation and properties of nano CeO2/waterborne polyurethane Composites[J]. Chem Ind Eng Prog,2017,36(12):4501−4507.
    [22]
    贺建平, 张磊, 陈琳, 杨占旭, 佟宇飞. CeO2改性Cu/Zn-Al水滑石衍生催化剂对甲醇水蒸气重整制氢性能的影响[J]. 高等学校化学学报,2017,38(10):1822−1828. doi: 10.7503/cjcu20170158

    HE Jian-ping, ZHANG Lei, CHEN Lin, YANG Zhan-xu, TONG Yu-fei. Effect of CeO2 modified Cu/Zn Al hydrotalcite derived catalyst on hydrogen production from methanol steam reforming[J]. J Chem Eng Coll Univ,2017,38(10):1822−1828. doi: 10.7503/cjcu20170158
    [23]
    JUNG W Y, HONG S S. Complete oxidation of benzene over CuO-CeO2 catalysts Prepared using different process[J]. J Nanosci Nanotechnol,2016,16(5):4576−4579. doi: 10.1166/jnn.2016.10983
    [24]
    WANG C, GCHENG Q G, WANG X L, MA K, BAI X Q, TAN S R, TIAN Y, DING T, ZHENG L R, ZHANG J, LI X G. Enhanced catalytic performance for CO preferential oxidation over CuO catalysts supported on highly defective CeO2 nanocrystals[J]. Appl Surf Sci,2017,422:932−943. doi: 10.1016/j.apsusc.2017.06.017
    [25]
    YANG S Q, ZHOU F, LIU Y J, ZHANG L, CHEN Y, WANG H H, TIAN Y, ZHANG C S, LIU D S. Morphology effect of ceria on the performance of CuO/CeO2 catalysts for hydrogen production by methanol steam reforming[J]. Int J Hydrog Energy,2019,44(14):7252−7261. doi: 10.1016/j.ijhydene.2019.01.254
    [26]
    WEI S, TIAN Q J Q, CUI M X, YAN P F, SEIK W N, LI W, LI G M. Catalytic performance of CeO2-supported Ni catalyst for hydrogenation of nitroarenes fabricated via coordination-assisted strategy[J]. ACS Appl Mater Inter,2018,10(17):14698−14707. doi: 10.1021/acsami.8b01187
    [27]
    SIMONA B, ANTONELLA D, NICOLETTA R, FEDERCA Z. Optimization of tailoring of CuOx species of silica alumina supported catalysts for the selective catalytic reduction of NOx[J]. J Phys Chem B,2003,107(22):5168−5176. doi: 10.1021/jp022064x
    [28]
    AMADINE O, ESSAMLALI Y, FIHRI A, ZAHOUILY M L. Effect of calcination temperature on the structure and catalytic performance of copper-ceria mixed oxide catalysts in phenol hydroxylation[J]. RSC Adv,2017,7(21):12586. doi: 10.1039/C7RA00734E
    [29]
    ZHANG L, PAN L W, NI C J, SUN T J, WANG S D, HU Y K, WANG A J, ZHAO S S. Effects of precipitation aging time on the performance of CuO/ZnO/CeO2-ZrO2 for methanol steam reforming[J]. J Fuel Chem Technol,2013,41(7):883−888. doi: 10.1016/S1872-5813(13)60038-9
    [30]
    JI Y J, JIN Z Y, LI J, ZHANG Y, LIU H Z, SHI L S, ZHONG Z Y, SU F B. Rambutan-like hierarchically heterostructured CeO2-CuO hollow microspheres: Facile hydrothermal synthesis and applications[J]. Nano Res,2017,10(2):381−396. doi: 10.1007/s12274-016-1298-0
    [31]
    穆昕, 潘立卫, 郏景省, 王树东. 微型平板式反应器中甲醇水蒸气重整制氢的研究[J]. 燃料化学学报,2008,36(3):338−342. doi: 10.3969/j.issn.0253-2409.2008.03.016

    MU Xin, PAN Li-wei, JIA Jing-sheng, WANG Shu-dong. Study on hydrogen production by methanol steam reforming in micro plate reactor[J]. J Fuel Chem Technol,2008,36(3):338−342. doi: 10.3969/j.issn.0253-2409.2008.03.016
    [32]
    张磊, 潘立卫, 倪长军, 孙天军, 王树东, 胡永康, 王安杰, 赵生生. 沉淀温度对CuO/ZnO/CeO2/ZrO2甲醇水蒸气重整制氢催化剂性能的影响[J]. 催化学报,2012,33(12):1958−1964.

    ZHANG Lei, PAN Li-wei, NI Chang-jun, SUN Tian-jun, WANG Shu-dong, HU Yong-kang, WANG An-jie, ZHAO Sheng-sheng. Effect of precipitation temperature on performance of CuO/ZnO/CeO2/ZrO2 Catalyst for hydrogen production by methanol steam reforming[J]. J Catal,2012,33(12):1958−1964.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (585) PDF downloads(85) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return