Volume 50 Issue 7
Aug.  2022
Turn off MathJax
Article Contents
ZHANG Na, HUANG Yan, ZHANG Jun-feng, ZHAO Ling-kui, LI Si-mi, TAO Hong-fan, WU Yun-fan. Catalytic oxidation of NO and toluene by supported perovskite LaCoO3/MO2[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 868-876. doi: 10.19906/j.cnki.JFCT.2022007
Citation: ZHANG Na, HUANG Yan, ZHANG Jun-feng, ZHAO Ling-kui, LI Si-mi, TAO Hong-fan, WU Yun-fan. Catalytic oxidation of NO and toluene by supported perovskite LaCoO3/MO2[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 868-876. doi: 10.19906/j.cnki.JFCT.2022007

Catalytic oxidation of NO and toluene by supported perovskite LaCoO3/MO2

doi: 10.19906/j.cnki.JFCT.2022007
Funds:  The project was supported by Key Research and Development Project of Hunan Province (2019SK2071), Hunan Province Strategic Emerging Industry Scientific and Technological Breakthroughs and Major Scientific and Technological Achievements Transformation Project (2019GK4027)
  • Received Date: 2021-12-20
  • Accepted Date: 2022-01-24
  • Rev Recd Date: 2022-01-19
  • Available Online: 2022-04-13
  • Publish Date: 2022-07-10
  • A series of LaCoO3/MO2 catalysts were prepared by support different carriers (M = Zr, Ti, Ce) through the citric acid sol-gel method, and the catalytic oxidation performance of toluene and NO and critical mechanism were investigated. The results found that the LaCoO3/CeO2 catalyst with CeO2 as the carrier exhibited the best catalytic oxidation performance, the conversion rate of NO reached 68% at 300 ℃ and t90 of toluene was 245 ℃. The physical and chemical properties and microstructure of the supported perovskite catalysts were characterized by BET, XRD, H2-TPR, XPS technologies. The results showed that the supported perovskite had a larger specific surface area. Meanwhile, the supported perovskite catalyst had more active lattice oxygen and better redox performance. Moreover, the interaction between Co and Ce ions existed in the contact interface of LaCoO3 and the carrier CeO2, which was conducive to the formation of oxygen vacancies, thus providing more active sites for the reaction. The reaction mechanism was further explored by in-situ DRIFTs. NO oxidation on LaCoO3/CeO2 catalyst followed the Langmuir-Hinshelwood mechanism, and toluene oxidation followed the Mars-van Krevelen mechanism.
  • loading
  • [1]
    ZHANG K, LI L, HUANG L, WANG Y H, YANG J, HUO J T. The impact of volatile organic compounds on ozone formation in the suburban area of Shanghai[J]. Atmos Environ,2020,23(2):117511.
    [2]
    宁汝亮, 刘霄龙, 朱廷钰. 低温SCR脱硝催化剂研究进展[J]. 过程工程学报,2019,19(2):223−234. doi: 10.12034/j.issn.1009-606X.218233

    NING Ru-liang, LIU Xiao-long, ZHU Ting-yu. Research progress of low temperature SCR catalyst for denitrification[J]. Chin J Process Eng,2019,19(2):223−234. doi: 10.12034/j.issn.1009-606X.218233
    [3]
    单文坡, 余运波, 张燕, 贺泓. 中国重型柴油车后处理技术研究进展[J]. 环境科学研究,2019,32(10):1672−1677.

    SHEN Wen-po, YU Yun-bo, ZHANG Yan, HE Hong. Research progress of heavy-duty diesel vehicle reprocessing technology in China[J]. Res Environ Sci,2019,32(10):1672−1677.
    [4]
    刘希瑞, 郭冬冬, 李家琛, 葛蕴珊, 谭建伟, 吕立群. 国六重型柴油车挥发性有机物排放特性[J]. 中国环境科学,2021,41(7):3131−3137. doi: 10.3969/j.issn.1000-6923.2021.07.015

    LIU Xi-rui, GUO Dong-dong, LI Jia-chen, GE Yun-shan, TAN Jian-wei, LU Li-qun. Emission characteristics of volatile organic compounds from diesel vehicles[J]. Chin Environ Sci,2021,41(7):3131−3137. doi: 10.3969/j.issn.1000-6923.2021.07.015
    [5]
    黄海凤, 王庐云, 漆仲华, 卢晗锋. 柴油尾气DOC催化剂Pt-Pd/CeO2的活性和抗硫性[J]. 燃料化学学报,2013,41(11):1401−1408.

    Huang Hai-feng, WANG Lu-yun, QI Zhong-hua, LU Han-feng. Activity and sulfur resistance of Pt-Pd/CeO2 as DOC catalyst for diesel exhaust[J]. J Fuel Chem Technol,2013,41(11):1401−1408.
    [6]
    IRUSTA S, PINA M P, MENéNDEZ M. Catalytic combustion of volatile organic compounds over La-based perovskites[J]. J Catal,1998,179(2):400−412. doi: 10.1006/jcat.1998.2244
    [7]
    BARBATO P S, DI SARLI V, LANDI G. High pressure methane catalytic combustion over novel partially coated LaMnO3-based monoliths[J]. Chem Eng J,2015,259:381−390. doi: 10.1016/j.cej.2014.07.123
    [8]
    SHEN Q, DONG S, LI S, YANG G, PAN X. A Review on the catalytic decomposition of NO by perovskite-type oxides[J]. Catal,2021,11(5):622.
    [9]
    沈柳倩. 钙钛矿型催化剂催化燃烧VOCs的活性、抗毒性和稳定性研究[D]. 杭州: 浙江工业大学, 2008.

    SHEN Liu-qian. Study on the activity, anti-toxicity and stability of VOCs catalyzed by perovskite catalyst[D]. Hangzhou: Zhejiang University of Technol, 2008.
    [10]
    LIU L, SUN J, DING J, ZHANG Y, JIA J P, SUN T H. Catalytic oxidation of VOCs over SmMnO3 perovskites: Catalyst synthesis, change mechanism of active species, and degradation path of toluene[J]. Inorg Chem,2019,58(20):14275−14283.
    [11]
    WANG Y Q, XUE Y F, ZHAO C C, ZHAO D F, LIU F, WANG K K. Catalytic combustion of toluene with La0.8Ce0.2MnO3 supported on CeO2 with different morphologies[J]. Chem Eng J,2016,300:300−305. doi: 10.1016/j.cej.2016.04.007
    [12]
    孙英, 黄妍, 赵威, 苏潜, 张俊丰, 杨柳春. 负载型钙钛矿催化氧化NO及抗SO2性能研究[J]. 燃料化学学报,2014,42(10):1246−1252. doi: 10.3969/j.issn.0253-2409.2014.10.014

    SUN Ying, HUANG Yan, ZHAO Wei, SU Qian, ZHANG Jun-feng, YANG Liu-chun. Study on catalytic Oxidation of NO and SO2 resistance of supported perovskite[J]. J Fuel Chem Technol,2014,42(10):1246−1252. doi: 10.3969/j.issn.0253-2409.2014.10.014
    [13]
    单文坡, 刘福东, 贺泓. 柴油车尾气中氮氧化物的催化净化[J]. 科学通报,2014,1(26):2540−2549.

    SHAN Wen-po, LIU Fu-dong, HE Hong. Catalytic purification of nitrogen oxides from diesel vehicle exhaust[J]. Chin Sci Bull,2014,1(26):2540−2549.
    [14]
    LU P , YE L , YAN X H , CHEN D S, CHEN D Y, CHEN X B, FANG P, CEN C H. Performance of toluene oxidation over MnCe/HZSM-5 catalyst with the addition of NO and NH3[J]. Appl Surf Sci,2021,567:150836.
    [15]
    PAN H, CHEN Z, MA M, GUO T, LING X, ZHENG Y, HE C, CHEN J. Mutual inhibition mechanism of simultaneous catalytic removal of NOx and toluene on Mn-based catalysts[J]. J Collid Interface Sci,2022,607(2):1189−1200.
    [16]
    YE L, LU P, PENG Y, LI J, HUANG H. Impact of NOx and NH3 addition on toluene oxidation over MnOx-CeO2 catalyst[J]. J Hazard Mater,2021,416:125939. doi: 10.1016/j.jhazmat.2021.125939
    [17]
    ZHANG T, QU R Y, SU W K, LI J H. A novel Ce-Ta mixed oxide catalyst for the selective catalytic reduction of NOx with NH3[J]. Appl Catal B: Environ,2015,176:338−346.
    [18]
    NAKAGAWA K, MURATA Y, ADACHI M. Formation and catalytic activity of nanostructured oxides of cerium and cerium-titanium composite prepared by surfactant-assisted mechanism[C]//Proceedings of the Asian Pacific Confederation of Chem Eng Congress Program, 2004.
    [19]
    LIU Z H, ZHENG Y J, GAO T T, ZHANG L, SUN X F, ZHOU G W. Fabrication of anatase TiO2 tapered tetragonal nanorods with designed 100, 001 and 101 facets for enhanced photocatalytic H2 evolution[J]. Int Hydrogen Energy,2017,42(34):21775−21785. doi: 10.1016/j.ijhydene.2017.07.067
    [20]
    GOKON N, MURAYAMA H, NAGASAKI A, KADAMA T. Thermochemical two-step water splitting cycles by monoclinic ZrO2-supported NiFe2O4 and Fe3O4 powders and ceramic foam devices[J]. Sol Energy,2009,83(4):527−537. doi: 10.1016/j.solener.2008.10.003
    [21]
    CHEN H L, WEI G L, LIANG X L, LIU P, XI Y F, ZHU J X. Facile surface improvement of LaCoO3 perovskite with high activity and water resistance towards toluene oxidation: Ca substitution and citric acid etching[J]. Catal Sci Technol,2020,10(17):5829−5839.
    [22]
    SIM Y, KWON D, AN S, HA J M. Catalytic behavior of ABO3 perovskites in the oxidative coupling of methane[J]. Mol Catal,2020,489(11):110−125.
    [23]
    LIN X T, LI S J, HE H, WU Z, Wu J L. Evolution of oxygen vacancies in MnOx-CeO2 mixed oxides for soot oxidation[J]. Appl Catal B: Environ,2017,(223):91−102.
    [24]
    郭良, 刘迪, 杜朕屹, 冯杰, 李文英. ZrO2改性对Ni/SBA-15催化二苯并呋喃加氢脱氧的促进作用研究[J]. 燃料化学学报,2021,49(5):673−683.

    GUO Liang, LIU Di, DU Zheng-yi, FENG Jie, LI Wen-ying. Effect of ZrO2 modification on Ni/SBA-15 catalyzed hydrodeoxidation of dibenzofuran[J]. J Fuel Chem Technol,2021,49(5):673−683.
    [25]
    KIM S, MAHADIK M A, PERIYASAMY A, CHAE W S, JANG J S. Rational design of interface refining through Ti4+/Zr4+ diffusion/doping and TiO2/ZrO2 surface crowning of ZnFe2O4 nanocorals for photoelectrochemical water splitting dagger[J]. Catal Sci Technol,2021,11(9):3141−3152.
    [26]
    ZHANG X P, WANG J X, TAN B J, ZHANG N, BAO J J, HE G H. Ce-Co interaction effects on the catalytic performance of uniform mesoporous Cex-Coy catalysts in Hg0 oxidation process[J]. Fuel,2018,226(15):18−26.
    [27]
    MO S P, ZHANG Q, LI J Q, SUN Y H, REN Q M. Highly efficient mesoporous MnO2 catalysts for the total toluene oxidation: Oxygen-Vacancy defect engineering and involved intermediates using in situ DRIFTS[J]. Appl Catal B: Environ,2020,264:118−126.
    [28]
    YE L M, LU P, CHEN X B, FANG P, PENG Y, LI J H, HUANG H B. The deactivation mechanism of toluene on MnOx-CeO2 SCR catalyst[J]. Appl Catal B: Environ,2020,277:119257. doi: 10.1016/j.apcatb.2020.119257
    [29]
    YANG W, SU Z, XU Z, YANG W, LI J. Comparative study of α-, β-, γ- and δ-MnO2 on toluene oxidation: Oxygen vacancies and reaction intermediates[J]. Appl Catal B: Environ,2019,260:118−130.
    [30]
    ZHANG Q, MO S, LI J, SUN Y, YE D. In situ DRIFT spectroscopy insights into the reaction mechanism of CO and toluene co-oxidation over Pt-based catalysts[J]. Catal Sci Technol,2019,9(17):4538−4551.
    [31]
    YANG Y, XU W Q, WANG J, ZHU T Y. New insight into simultaneous removal of NO and Hg0 on CeO2-modified V2O5/TiO2 catalyst: A new modification strategy[J]. Fuel,2019,249:178−187. doi: 10.1016/j.fuel.2019.03.103
    [32]
    HUI W, HU C, YING W, YONG K. Performance and mechanism comparison of manganese oxides at different valence states for catalytic oxidation of NO: ScienceDirect[J]. Chem Eng J,2019,361:1161−1172. doi: 10.1016/j.cej.2018.12.159
    [33]
    RAN A, MA L P, GUO Z Y, LIU H P, YANG J, YIN X, PAN Q H. Effects of the preparation method on the simultaneous catalytic oxidation performances of LaCoO3 perovskites for NO and Hg0[J]. Fuel,2021,305:121617.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (385) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return