Volume 51 Issue 2
Jan.  2023
Turn off MathJax
Article Contents
ZHU Zhong-xu, TANG Feng, JIN Yu-qi, CHEN Si-yu, MA Jia-yu. Computational study on the chain cracking mechanisms and rate constants of C2 chain hydrocarbons during pyrolysis/gasification[J]. Journal of Fuel Chemistry and Technology, 2023, 51(2): 251-262. doi: 10.19906/j.cnki.JFCT.2022048
Citation: ZHU Zhong-xu, TANG Feng, JIN Yu-qi, CHEN Si-yu, MA Jia-yu. Computational study on the chain cracking mechanisms and rate constants of C2 chain hydrocarbons during pyrolysis/gasification[J]. Journal of Fuel Chemistry and Technology, 2023, 51(2): 251-262. doi: 10.19906/j.cnki.JFCT.2022048

Computational study on the chain cracking mechanisms and rate constants of C2 chain hydrocarbons during pyrolysis/gasification

doi: 10.19906/j.cnki.JFCT.2022048
Funds:  The project was supported by National Key R&D Program of China (2018YFD1100602)
  • Received Date: 2022-03-14
  • Accepted Date: 2022-06-06
  • Rev Recd Date: 2022-05-23
  • Available Online: 2022-06-23
  • Publish Date: 2023-02-15
  • Chain hydrocarbons cracking always occurs in pyrolysis/gasification. Among them, the reaction time of light chain hydrocarbons is short and they have many reaction paths, which make it difficult to accurately detect and analyze each evolution path by experiment. In this study, Gaussian and its related software were employed to predict the reaction sites and to study the chain cracking mechanism of C2 chain hydrocarbons (including ethane, ethylene and acetylene) under the action of H/OH/O radicals or H2O. According to the results, radicals can both attack the C and H atoms of ethane, while the C atoms of ethylene and acetylene are the main attack sites. Among the above radicals, OH radical is the best for unsaturated hydrocarbons cracking, while H radical is the best for saturated hydrocarbons, showing that the steam is conducive to the cracking of C2 chain hydrocarbons in actual process. In addition, comparing the optimal path of the reaction of ethylene or acetylene with OH radical, it can be found that CH2CH2OH radicals are easier to crack than CH2CHO radicals below 1200 K, while CH2CHO radicals are easier to crack above 1200 K, inferring the better response speed of aldehyde groups for temperature than alcohol groups.
  • loading
  • [1]
    MARCULESCU C, CENUŞĂ V, ALEXE F. Analysis of biomass and waste gasification lean syngases combustion for power generation using spark ignition engines[J]. Waste Manage,2016,47:133−140. doi: 10.1016/j.wasman.2015.06.043
    [2]
    ARENA U. Process and technological aspects of municipal solid waste gasification. A review[J]. Waste Manage,2012,32(4):625−639. doi: 10.1016/j.wasman.2011.09.025
    [3]
    BROWN R C. The role of pyrolysis and gasification in a carbon negative economy[J]. Processes,2021,9(5):882. doi: 10.3390/pr9050882
    [4]
    BOGUSH A A, STEGEMANN J A, WILLIAMS R, WOOD I G. Element speciation in UK biomass power plant residues based on composition, mineralogy, microstructure and leaching[J]. Fuel,2018,211:712−725. doi: 10.1016/j.fuel.2017.09.103
    [5]
    SCHEFTELOWITZ M, BECKER R, THRÄN D. Improved power provision from biomass: A retrospective on the impacts of German energy policy[J]. Biomass Bioenergy,2018,111:1−12. doi: 10.1016/j.biombioe.2018.01.010
    [6]
    JÅSTAD E O, BOLKESJØ T F, TRØMBORG E, RØRSTAD P K. The role of woody biomass for reduction of fossil GHG emissions in the future North European energy sector[J]. Appl Energy,2020,274:115360. doi: 10.1016/j.apenergy.2020.115360
    [7]
    FUTAMURA S, KABASHIMA H, ANNADURAI G. Roles of CO2 and H2O as oxidants in the plasma reforming of aliphatic hydrocarbons[J]. Catal Today,2006,115(1/4):211−216. doi: 10.1016/j.cattod.2006.02.032
    [8]
    TANG F, CHI Y, JIN Y, ZHU Z, MA J. Gasification characteristics of a simulated waste under separate and mixed atmospheres of steam and CO2[J]. Fuel,2022,317:123527. doi: 10.1016/j.fuel.2022.123527
    [9]
    CHENG Y, THOW Z, WANG C. Biomass gasification with CO2 in a fluidized bed[J]. Powder Technol,2016,296:87−101. doi: 10.1016/j.powtec.2014.12.041
    [10]
    PINTO F, ANDRÉ R, MIRANDA M, NEVES D, VARELA F, SANTOS J. Effect of gasification agent on co-gasification of rice production wastes mixtures[J]. Fuel,2016,180:407−416. doi: 10.1016/j.fuel.2016.04.048
    [11]
    EBADI A G, HISORIEV H. Gasification of algal biomass (Cladophora glomerata L. ) with CO2/H2O/O2 in a circulating fluidized bed[J]. Environ Technol,2019,40(6):749−755. doi: 10.1080/09593330.2017.1406538
    [12]
    YOON S J, CHOI Y, LEE J. Hydrogen production from biomass tar by catalytic steam reforming[J]. Energy Convers Manage,2010,51(1):42−47. doi: 10.1016/j.enconman.2009.08.017
    [13]
    LOPEZ G, ARTETXE M, AMUTIO M, ALVAREZ J, BILBAO J, OLAZAR M. Recent advances in the gasification of waste plastics. A critical overview[J]. Renewable Sustainable Energy Rev,2018,82:576−596. doi: 10.1016/j.rser.2017.09.032
    [14]
    SIVARAMAKRISHNAN R, MICHAEL J V, RUSCIC B. High-temperature rate constants for H/D + C2H6 and C3H8[J]. Int J Chem Kinet,2012,44(3):194−205. doi: 10.1002/kin.20607
    [15]
    MICHAEL J V, SU M C, SUTHERLAND J W, HARDING L B, WAGNER A F. Rate constants for D + C2H4→C2H3D + H at high temperature: implications to the high pressure rate constant for H + C2H4→C2H5[J]. Proc Combust Inst,2005,30(1):965−973. doi: 10.1016/j.proci.2004.08.213
    [16]
    MIYOSHI A, OHMORI K, TSUCHIYA K, MATSUI H. Reaction rates of atomic oxygen with straight chain alkanes and fluoromethanes at high temperatures[J]. Chem Phys Lett,1993,204(3/4):241−247. doi: 10.1016/0009-2614(93)90003-J
    [17]
    MICHAEL J V. Rate constants for the reaction O + D2→OD + D by the flash photolysis-shock tube technique over the temperature range 825–2487 K: The H2 to D2 isotope effect[J]. J Chem Phys,1989,90(1):189−198. doi: 10.1063/1.456513
    [18]
    FETHI K, BINOD R G, MILÁN S, BÉLA V, AAMIR F. An experimental and theoretical study on the kinetic isotope effect of C2H6 and C2D6 reaction with OH[J]. Chem Phys Lett,2015,641:158−162. doi: 10.1016/j.cplett.2015.10.057
    [19]
    VASU S S, HONG Z, DAVIDSON D F, HANSON R K, GOLDEN D M. Shock tube/laser absorption measurements of the reaction rates of OH with ethylene and propene[J]. J Phys Chem A,2010,114(43):11529−11537. doi: 10.1021/jp106049s
    [20]
    张红梅, 林枫, 任铭琪, 李金莲, 郝玉兰, 吴红军, 赵晶莹, 赵亮, 贺永殿. 小分子烃类蒸汽热裂解自由基机理模型研究方法的探讨[J]. 化工学报,2017,68(4):1423−1433.

    ZHANG Hong-mei, LIN Feng, REN Ming-qi, LI Jin-lian, HE Yu-lan, WU Hong-jun, ZHAO Jing-ying, ZHAO Liang, HE Yong-dian. Free radical models of small molecular alkane pyrolysis[J]. CIESC J,2017,68(4):1423−1433.
    [21]
    MANION J A, HUIE R E, LEVIN R D, JR. BURGESS D R, ORKIN V L, TSANG W, MCGIVERN W S, HUDGENS J W, KNYAZEV V D, ATKINSON D B, CHAI E, TEREZA A M, LIN C Y, ALLISON T C, MALLARD W G, WESTLEY F, HERRON J T, HAMPSON R F, FRIZZELL D H. NIST Chemical Kinetics Database[EB/OL]. https://kinetics.nist.gov/kinetics/index.jsp
    [22]
    RAMAZANI S. Direct-dynamics VTST study of hydrogen or deuterium abstraction and C–C bond formation or dissociation in the reactions of CH3 + CH4, CH3 + CD4, CH3D + CD3, CH3CH3 + H, and CH3CD3 + D[J]. J Chem Phys,2013,138(19):194305. doi: 10.1063/1.4803862
    [23]
    NGUYEN T L, VEREECKEN L, PEETERS J. Quantum chemical and theoretical kinetics study of the O(3P) + C2H2 reaction: A multistate process[J]. J Phys Chem A,2006,110(21):6696−6706. doi: 10.1021/jp055961k
    [24]
    DING J, ZHANG L, KELI H. Thermal rate constants of the pyrolysis of n-heptane[J]. Combust Flame,2011,158(12):2314−2324. doi: 10.1016/j.combustflame.2011.04.015
    [25]
    DIAMANTI A, ADJIMAN C S, PICCIONE P M, REA A M, GALINDO A. Development of predictive models of the kinetics of a hydrogen abstraction reaction combining quantum-mechanical calculations and experimental data[J]. Ind Eng Chem Res,2016,56(4):815−831.
    [26]
    OGLIARO F, BEARPARK M J, HEYD J J, BROTHERS E N, KUDIN K N, STAROVEROV V N, KEITH T A, KOBAYASHI R, NORMAND J, RAGHAVACHARI K[CP]. Gaussian 16, Revision C. 01, Gaussian. Inc. : Wallingford, CT, USA. 2016.
    [27]
    LU T, CHEN F. Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm[J]. J Mol Graphics Modell,2012,38:314−323. doi: 10.1016/j.jmgm.2012.07.004
    [28]
    LU T, CHEN F. Multiwfn: A multifunctional wavefunction analyzer[J]. J Comput Chem,2012,33(5):580−592. doi: 10.1002/jcc.22885
    [29]
    ZHANG J. Libreta: Computerized optimization and code synthesis for electron repulsionintegral evaluation[J]. J Chem Theory Comput,2018,14(2):572−587. doi: 10.1021/acs.jctc.7b00788
    [30]
    HUMPHREY W, DALKE A, SCHULTEN K. VMD: Visual molecular dynamics[J]. J Mol Graphics Modell,1996,14(1):33−38. doi: 10.1016/0263-7855(96)00018-5
    [31]
    LU T, CHEN Q. Shermo: A general code for calculating molecular thermochemistry properties[J]. Comput Theor Chem,2021,1200:113249. doi: 10.1016/j.comptc.2021.113249
    [32]
    付蓉, 卢天, 陈飞武. 亲电取代反应中活性位点预测方法的比较[J]. 物理化学学报,2014,30(4):628−639. doi: 10.3866/PKU.WHXB201401211

    FU Rong, LU Tian, CHEN Fei-wu. Comparing methods for predicting the reactive site of electrophilic substitution[J]. Acta Phys-Chim Sin,2014,30(4):628−639. doi: 10.3866/PKU.WHXB201401211
    [33]
    BARTLETT R, MUSIA M. Coupled-cluster theory in quantum chemistry[J]. Rev Mod Phys,2007,79(1):291−352. doi: 10.1103/RevModPhys.79.291
    [34]
    杨振丽. 烷基过氧自由基和芳香烃双环过氧自由基与HO2的化学反应动力学理论研究[D]. 合肥: 中国科学技术大学, 2020.

    YANG Zhen-li. A theoretical study on the chemical reaction kinetics of the alkyl peroxy radicals and aromatic bicyclic peroxy radicals with HO2 reactions[D]. Hefei: University of Science and Technology of China, 2020.
    [35]
    MIHÁLY K, JÜRGEN G. Approximate treatment of higher excitations in coupled-cluster theory. II. Extension to general single-determinant reference functions and improved approaches for the canonical Hartree-Fock case[J]. J Chem Phys,2008,129(14):144101. doi: 10.1063/1.2988052
    [36]
    BOMBLE Y J, STANTON J F, KÁLLAY M, GAUSS J. Coupled-cluster methods including noniterative corrections for quadruple excitations[J]. J Chem Phys,2005,123(5):54101. doi: 10.1063/1.1950567
    [37]
    DAVIDSON E R. Comment on comment on Dunning's correlation-consistent basis sets[J]. Chem Phys Lett,1996,260(3):514−518.
    [38]
    MERRICK J P, MORAN D, RADOM L. An evaluation of harmonic vibrational frequency scale factors[J]. J Phys Chem A,2007,111(45):11683. doi: 10.1021/jp073974n
    [39]
    SKODJE R T, TRUHLAR D G, GARRETT B C. Vibrationally adiabatic models for reactive tunneling[J]. J Chem Phys,1982,77(12):5955−5976. doi: 10.1063/1.443866
    [40]
    GONZALEZ C, SCHLEGEL H B. Reaction-path following in mass-weighted internal coordinates[J]. J Phys Chem,1990,94:5523−5527. doi: 10.1021/j100377a021
    [41]
    黄罗仪, 翁约约, 黄旭慧, 王朝杰. 车前草中黄酮类成分结构和性质的理论研究[J]. 高等学校化学学报,2021,42(9):2752−2765. doi: 10.7503/cjcu20210180

    HUANG Luo-yi, WENG Yue-yue, HUANG Xu-hui, WANG Chao-jie. Theoretical study on the structures and properties of flavonoids in plantain[J]. Chem J Chin Univ,2021,42(9):2752−2765. doi: 10.7503/cjcu20210180
    [42]
    POLITZER P, MURRAY J S, BULAT F A. Average local ionization energy: A review[J]. J Mol Model,2010,16(11):1731−1742. doi: 10.1007/s00894-010-0709-5
    [43]
    曹静思, 陈飞武. 芳香化合物亲核、亲电反应活性的理论预测和实验反应速率的相关性研究[J]. 有机化学,2016,36(10):2463−2471. doi: 10.6023/cjoc201602026

    CAO Jing-si, CHEN Fei-wu. Theoretical study on the correlation of the experimental nucleophilic and electrophilic reaction rates of aromatic compounds with the prediction results of theoretical methods[J]. Chin J Org Chem,2016,36(10):2463−2471. doi: 10.6023/cjoc201602026
    [44]
    唐海飞, 颜涛, 吴梅青. 莲心碱定量分子表面分析及反应位点预测[J]. 山西卫生健康职业学院学报,2020,30(6):7−9.

    TANG Hai-fei, YAN Tao, WU Mei-qing. Quantitative molecular surface analysis and reaction site prediction of Liensinine[J]. J Shanxi H Voc Coll,2020,30(6):7−9.
    [45]
    YAN T, HASE W L, DOUBLEDAY C. Energetics, transition states, and intrinsic reaction coordinates for reactions associated with O(3P) processing of hydrocarbon materials[J]. J Chem Phys,2004,120(19):9253−9265. doi: 10.1063/1.1705574
    [46]
    GARTON D J, MINTON T K, TROYA D, PASCUAL R, SCHATZ G C. Hyperthermal reactions of O(3P) with alkanes:   observations of novel reaction pathways in crossed-beams and theoretical studies[J]. J Phys Chem A,2003,107(23):4583−4587. doi: 10.1021/jp0226026
    [47]
    GARTON D J, MINTON T K, HU W, SCHATZ G C. Experimental and theoretical investigations of the inelastic and reactive scattering dynamics of O(3P) collisions with ethane[J]. J Phys Chem A,2009,113(16):4722−4738. doi: 10.1021/jp900412w
    [48]
    SUN Y C, WANG I T, NGUYEN T L, LU H F, YANG X, MEBEL A M. A combined quantum chemistry and RRKM calculation predicts the O(1D) + C2H6 reaction can produce water molecule in a collision-free crossed molecular beam environment[J]. J Phys Chem A,2003,107:6986−6994.
    [49]
    NGUYEN T L, VEREECKEN L, HOU X J, NGUYEN M T, PEETERS J. Potential energy surfaces, product distributions and thermal rate coefficients of the reaction of O(3P) with C2H4(X1–Ag): A comprehensive theoretical study[J]. J Phys Chem A,2005,109:7489−7499. doi: 10.1021/jp052970k
    [50]
    TALOTTA F, MORISSET S, ROUGEAU N, LAUVERGNAT D, AGOSTINI F. Electronic structure and excited states of the collision reaction O(3P) + C2H4: A multiconfigurational perspective[J]. J Phys Chem A,2021,125(28):6075−6088. doi: 10.1021/acs.jpca.1c02923
    [51]
    TSANG W, HAMPSON R F. Chemical kinetic data base for combustion chemistry. Part I. methane and related compounds[J]. J Phys Chem Ref Data,1986,15(3):1087−1279. doi: 10.1063/1.555759
    [52]
    RAJAK K, MAITI B. Communications: direct dynamics study of the O((3)P)+C(2)H(2) reaction: contribution from spin nonconserving route[J]. J Chem Phys,2010,133(1):2093.
    [53]
    ZUO J, CHEN Q, HU X, HUA G, XIE D. Dissection of the multichannel reaction of acetylene with atomic oxygen: from the global potential energy surface to rate coefficients and branching dynamics[J]. Phys Chem Chem Phys,2019,21:1408−1416. doi: 10.1039/C8CP07084A
    [54]
    GE Y, GORDON M S, BATTAGLIA F, FOX R O. Theoretical study of the pyrolysis of methyltrichlorosilane in the gas phase. 3. Reaction rate constant calculations[J]. J Phys Chem A,2010,114(6):2384−2392. doi: 10.1021/jp911673h
    [55]
    YANG X, JASPER A W, KIEFER J H, TRANTER R S. The dissociation of diacetyl: a shock tube and theoretical study[J]. J Phys Chem A,2009,113(29):8318−8326. doi: 10.1021/jp903716f
    [56]
    OEHLSCHLAEGER M A, DA VIDSON D F, HANSON R K. High-temperature ethane and propane decomposition[J]. Proc Combust Inst,2005,30(1):1119−1127. doi: 10.1016/j.proci.2004.07.032
    [57]
    BACK R A. A search for a gas-phase free-radical inversion displacement reaction at a saturated carbon atom[J]. Can J Chem,2011,61(5):916−920.
    [58]
    HUYNH L K, PANASEWICZ S, RATKIEWICZ A, TRUONG T N. Ab initio study on the kinetics of hydrogen abstraction for the H + alkene→H2 + alkenyl reaction class[J]. J Phys Chem A,2007,111(11):2156−2165. doi: 10.1021/jp066659u
    [59]
    HUYNH L K, BARRIGER K, VIOLI A. Kinetics study of the OH + alkene→H2O + alkenyl reaction class[J]. J Phys Chem A,2008,112:1436−1444. doi: 10.1021/jp077028i
    [60]
    LI X, JASPER A W, ZÁDOR J, MILLER J A, KLIPPENSTEIN S J. Theoretical kinetics of O + C2H4[J]. Proc Combust Inst,2017,36:219−227. doi: 10.1016/j.proci.2016.06.053
    [61]
    DUFOUR A, MASSON E, GIRODS P, ROGAUME Y, ZOULALIAN A. Evolution of aromatic tar composition in relation to methane and ethylene from biomass pyrolysis-gasification[J]. Energy Fuels,2011,25:4182−4189. doi: 10.1021/ef200846g
    [62]
    DUFOUR A, VALIN S, CASTELLI P, THIERY S B, BOISSONNET G, ZOULALIAN A, GLAUDE P A. Mechanisms and kinetics of methane thermal conversion in a syngas[J]. Ing Eng Chem Res,2009,48(14):6564−6572.
    [63]
    WU W G, LUO Y H, YI S, ZHANG Y L, ZHAO S H, WANG Y. Nascent biomass tar evolution properties under homogeneous/heterogeneous decomposition conditions in a two-stage reactor[J]. Energy Fuels,2011,25:5394−5406. doi: 10.1021/ef2007276
    [64]
    MILLER J A, MELIUS C F. A theoretical analysis of the reaction between hydroxyl and acetylene[J]. Symp Combust,1989,22(1):1031−1039. doi: 10.1016/S0082-0784(89)80113-4
    [65]
    VANDOOREN J, TIGGELEN P. Reaction mechanisms of combustion in low pressure acetylene-oxygen flames[J]. Symp Combust,1977,16(1):1133−1144. doi: 10.1016/S0082-0784(77)80402-5
    [66]
    TSUBOI T, HASHIMOTO K. Shock tube study on homogeneous thermal oxidation of methanol[J]. Combust Flame,1981,42:61−76. doi: 10.1016/0010-2180(81)90142-5
  • 20221219105016_91.docx
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (351) PDF downloads(75) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return