Volume 51 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
LI Bao-zhen, MENG Fan-hui, WANG Li-na, LI Zhong. Study on preparation and catalytic performance of Zn-Al oxides for tandem reaction of syngas conversion into light olefins[J]. Journal of Fuel Chemistry and Technology, 2023, 51(1): 111-119. doi: 10.19906/j.cnki.JFCT.2022049
Citation: LI Bao-zhen, MENG Fan-hui, WANG Li-na, LI Zhong. Study on preparation and catalytic performance of Zn-Al oxides for tandem reaction of syngas conversion into light olefins[J]. Journal of Fuel Chemistry and Technology, 2023, 51(1): 111-119. doi: 10.19906/j.cnki.JFCT.2022049

Study on preparation and catalytic performance of Zn-Al oxides for tandem reaction of syngas conversion into light olefins

doi: 10.19906/j.cnki.JFCT.2022049
Funds:  The project was supported by the Natural Science Foundation of Shanxi Province (202103021224073) and the Key Research and Development Project of Shanxi Province (201803D421011)
  • Received Date: 2022-05-20
  • Accepted Date: 2022-06-16
  • Rev Recd Date: 2022-06-11
  • Available Online: 2022-09-26
  • Publish Date: 2023-01-10
  • A series of Zn-Al oxides with different Zn/Al atomic ratios were prepared by the microwave-assisted evaporation-induced self-assembly (M-EISA) method, using industrial pseudo-boehmite as aluminum source. The prepared Zn-Al oxides were physically mixed with SAPO-18 zeolite and applied in tandem reaction for direct conversion of syngas to light olefins (${\rm{C}}_2^= -{\rm{C}}_4^= $). X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption, CO and H2 temperature-programmed desorption (CO-TPD, H2-TPD) and X-ray photoelectron spectroscopy (XPS) were selected for characterization. As the increase of Zn/Al ratio, the specific surface area and pore volume of Zn-Al oxides gradually decreased, while the average pore diameter firstly increased and then decreased. Compared with the ZnAl-IP prepared by the impregnation (IP) method, the ZnAl2Ox with the Zn/Al ratio of 1∶2 had a high dispersion of Zn and formed the ZnAl2O4 spinel structure that produced more oxygen vacancies. The catalytic results showed that the activity of Zn-Al samples prepared by M-EISA method firstly increased and then decreased as the Zn/Al ratio rose, while the ${\rm{C}}_2^= -{\rm{C}}_4^= $ selectivity gradually decreased. ZnAl2Ox sample exhibited the highest CO conversion of 34.8% and almost no obvious deactivation after 50 h reaction, furthermore, its catalytic performance was much better than that of ZnAl-IP sample.
  • loading
  • [1]
    ZHAO Z, JIANG J, WANG F. An economic analysis of twenty light olefin production pathways[J]. J Energy Chem,2021,56:193−202. doi: 10.1016/j.jechem.2020.04.021
    [2]
    陈嵩嵩, 张国帅, 霍锋, 张军平. 煤基大宗化学品市场及产业发展趋势[J]. 化工进展,2020,39(12):5009−5020. doi: 10.16085/j.issn.1000-6613.2020-0841

    CHEN Song-song, ZHANG Guo-shuai, HUO Feng, ZHANG Jun-ping. Market and technology development trends of coal-based bulk chemicals[J]. Chem Ind Eng Prog,2020,39(12):5009−5020. doi: 10.16085/j.issn.1000-6613.2020-0841
    [3]
    杨光杰, 李飞, 王旭峰, 谷小虎. 合成气制低碳烯烃研究进展[J]. 现代化工,2020,40(4):61−64. doi: 10.16606/j.cnki.issn0253-4320.2020.04.014

    YANG Guang-jie, LI Fei, WANG Xu-feng, GU Xiao-hu. Research progress in syngas to light olefins[J]. Mod Chem Ind,2020,40(4):61−64. doi: 10.16606/j.cnki.issn0253-4320.2020.04.014
    [4]
    TIAN P, WEI Y, YE M LIU Z. Methanol to olefins (MTO): from fundamentals to commercialization[J]. ACS Catal,2015,5(3):1922−1938. doi: 10.1021/acscatal.5b00007
    [5]
    ZHOU W, CHENG K, KANG J, ZHOU C, SUBRAMANIAN V, ZHANG Q, WANG Y. New horizon in C1 chemistry: Breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J]. Chem Soc Rev,2019,48(12):3193−3228. doi: 10.1039/C8CS00502H
    [6]
    JIAO F, LI J, PAN X, XIAO J, LI H, MA H, WEI M, PAN Y, ZHOU Z, LI M, MIAO S, LI J, ZHU Y, XIAO D, HE T, YANG J, QI F, FU Q, BAO X. Selective conversion of syngas to light olefins[J]. Science,2016,351(6277):1065−1068. doi: 10.1126/science.aaf1835
    [7]
    CHENG K, GU B, LIU X, KANG J, ZHANG Q, WANG Y. Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon–carbon coupling[J]. Angew Chem Int Ed,2016,55(15):4725−4728. doi: 10.1002/anie.201601208
    [8]
    MENG F, LI X, ZHANG P, YANG L, YANG G, MA P, LI Z. Highly active ternary oxide ZrCeZnOx combined with SAPO-34 zeolite for direct conversion of syngas into light olefins[J]. Catal Today,2021,368:118−125. doi: 10.1016/j.cattod.2020.03.023
    [9]
    HUANG Y, MA H, XU Z, QIAN W, ZHANG H, YING W. Direct conversion of syngas to light olefins over a ZnCrOx + H-SSZ-13 bifunctional catalyst[J]. ACS Omega,2021,6(16):10953−10962. doi: 10.1021/acsomega.1c00751
    [10]
    SU J, WANG D, WANG Y, ZHOU H, LIU C, LIU S, WANG C, YANG W, XIE Z, HE M. Direct conversion of syngas into light olefins over zirconium-doped indium(III) oxide and SAPO-34 bifunctional catalysts: Design of oxide component and construction of reaction network[J]. ChemCatChem,2018,10(7):1536−1541. doi: 10.1002/cctc.201702054
    [11]
    DU C, GAPU CHIZEMA L, HONDO E, TONG M, MA Q, GAO X, YANG R, LU P, TSUBAKI N. One-step conversion of syngas to light olefins over bifunctional metal-zeolite catalyst[J]. Chin J Chem Eng,2021,36:101−110. doi: 10.1016/j.cjche.2020.09.004
    [12]
    CHEN W, LIN T, DAI Y, AN Y, YU F, ZHONG L, LI S, SUN Y. Recent advances in the investigation of nanoeffects of Fischer-Tropsch catalysts[J]. Catal Today,2018,311:8−22. doi: 10.1016/j.cattod.2017.09.019
    [13]
    PAN X, JIAO F, MIAO D, BAO X. Oxide–zeolite-based composite catalyst concept that enables syngas chemistry beyond Fischer-Tropsch synthesis[J]. Chem Rev,2021,121(11):6588−6609. doi: 10.1021/acs.chemrev.0c01012
    [14]
    史永永, 蒋东海, 杨春亮, 易芸, 刘飞, 林倩, 曹建新. 双功能催化剂在合成气一步法制低碳烯烃中的研究进展[J]. 应用化工,2021,50(4):1060−1063. doi: 10.3969/j.issn.1671-3206.2021.04.042

    SHI Yong-yong, JIANG Dong-hai, YANG Chun-liang, YI Yun, LIU Fei, LIN Qian, CAO Jian-xin. Research progress of bifunctional catalyst for one-step coversion from syngas to light olefins[J]. Appl Chem Ind,2021,50(4):1060−1063. doi: 10.3969/j.issn.1671-3206.2021.04.042
    [15]
    ZHANG X, ZHANG G, LIU W, YUAN F, WANG J, ZHU J, JIANG X, ZHANG A, DING F, SONG C, GUO X. Reaction-driven surface reconstruction of ZnAl2O4 boosts the methanol selectivity in CO2 catalytic hydrogenation[J]. Appl Catal B: Environ,2021,284:119700. doi: 10.1016/j.apcatb.2020.119700
    [16]
    ZHANG P, MENG F, LI X, YANG L, MA P, LI Z. Excellent selectivity for direct conversion of syngas to light olefins over a Mn-Ga oxide and SAPO-34 bifunctional catalyst[J]. Catal Sci Technol,2019,9(20):5577−5581. doi: 10.1039/C9CY01348B
    [17]
    CHEN H, LIU Z, LI N, JIAO F, CHEN Y, ZHAO Z, GUO M, LIU X, HAN X, PAN X, GONG X, HOU G, BAO X. A mechanistic study of syngas conversion to light olefins over OXZEO bifunctional catalysts: Insights into the initial carbon–carbon bond formation on the oxide[J]. Catal Sci Technol,2022,12(4):1289−1295. doi: 10.1039/D1CY01807H
    [18]
    LIU Y, DENG D, BAO X. Catalysis for selected C1 chemistry[J]. Chem,2020,6(10):2497−2514. doi: 10.1016/j.chempr.2020.08.026
    [19]
    LIU X, ZHOU W, YANG Y, CHENG K, KANG J, ZHANG L, ZHANG G, MIN X, ZHANG Q, WANG Y. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates[J]. Chem Sci,2018,9(20):4708−4718. doi: 10.1039/C8SC01597J
    [20]
    WANG J, TANG C, LI G, HAN Z, LI Z, LIU H, CHENG F, LI C. High-performance MaZrOx (Ma = Cd, Ga) solid-solution catalysts for CO2 hydrogenation to methanol[J]. ACS Catal,2019,9(11):10253−10259. doi: 10.1021/acscatal.9b03449
    [21]
    SU J, ZHOU H, LIU S, WANG C, JIAO W, WANG Y, LIU C, YE Y, ZHANG L, ZHAO Y, LIU H, WANG D, YANG W, XIE Z, HE M. Syngas to light olefins conversion with high olefin/paraffin ratio using ZnCrOx/AlPO-18 bifunctional catalysts[J]. Nat Commun,2019,10(1):1297. doi: 10.1038/s41467-019-09336-1
    [22]
    HU W, WANG C, WANG Y, KE J, YANG G, DU Y, YANG W. First-principles-based microkinetic simulations of syngas to methanol conversion on ZnAl2O4 spinel oxide[J]. Appl Surf Sci,2021,569:151064. doi: 10.1016/j.apsusc.2021.151064
    [23]
    MOU J, FAN X, LIU F, WANG X, ZHAO T, CHEN P, LI Z, YANG C, CAO J. CO2 hydrogenation to lower olefins over Mn2O3-ZnO/SAPO-34 tandem catalysts[J]. Chem Eng J,2021,421:129978. doi: 10.1016/j.cej.2021.129978
    [24]
    YE A, LI Z, DING J, XIONG W, HUANG W. Synergistic catalysis of Al and Zn sites of spinel ZnAl2O4 catalyst for CO hydrogenation to methanol and dimethyl ether[J]. ACS Catal,2021,11(15):10014−10019. doi: 10.1021/acscatal.1c02742
    [25]
    LIU X, WANG M, YIN H, HU J, CHENG K, KANG J, ZHANG Q, WANG Y. Tandem catalysis for hydrogenation of CO and CO2 to lower olefins with bifunctional catalysts composed of spinel oxide and SAPO-34[J]. ACS Catal,2020,10(15):8303−8314. doi: 10.1021/acscatal.0c01579
    [26]
    RAVEENDRA G, LI C, CHENG Y, MENG F, LI Z. Direct transformation of syngas to lower olefins synthesis over hybrid Zn-Al2O3/SAPO-34 catalysts[J]. New J Chem,2018,42(6):4419−4431. doi: 10.1039/C7NJ04734G
    [27]
    RAVEENDRA G, MA B, LIU X, GUO Y, WANG Y. Syngas to light olefin synthesis over La doped ZnxAlyOz composite and SAPO-34 hybrid catalysts[J]. Catal Sci Technol,2021,11(9):3231−3240. doi: 10.1039/D0CY02277B
    [28]
    RAVEENDRA G, LI C, LIU B, CHENG Y, MENG F, LI Z. Synthesis of lower olefins from syngas over Zn/Al2O3-SAPO-34 hybrid catalysts: role of doped Zr and influence of the Zn/Al2O3 ratio[J]. Catal Sci Technol,2018,8(14):3527−3538. doi: 10.1039/C8CY00574E
    [29]
    STRACHOWSKI T, GRZANKA E, MIZERACKI J, CHLANDA A, BARAN M, MAŁEK M, NIEDZIAŁEK M. Microwave-assisted hydrothermal synthesis of zinc-aluminum spinel ZnAl2O4[J]. Materials,2022,15(1):245.
    [30]
    TIAN S, TAN L, WU Y, KOU Y, XIE H, TSUBAKI N, TAN Y. The role of different state ZnO over non-stoichiometric Zn-Cr spinel catalysts for isobutanol synthesis from syngas[J]. Appl Catal A: Gen,2017,536:57−66. doi: 10.1016/j.apcata.2017.02.016
    [31]
    BESZEDA I, BEKE D L, KAGANOVSKII Y. Kinetics of growth and lateral spreading of a spinel layer around NiO particles on Al2O3 substrate[J]. Surf Sci,2004,569(1):5−11.
    [32]
    FULVIO P F, BROSEY R I, JARONIEC M. Synthesis of mesoporous alumina from boehmite in the presence of triblock copolymer[J]. ACS Appl Mater Inter,2010,2(2):588−593. doi: 10.1021/am9009023
    [33]
    GONÇALVES A A S, COSTA M J F, ZHANG L, CIESIELCZYK F, JARONIEC M. One-pot synthesis of MeAl2O4 (Me = Ni, Co, or Cu) supported on γ-Al2O3 with ultralarge mesopores: enhancing interfacial defects in γ-Al2O3 to facilitate the formation of spinel structures at lower temperatures[J]. Chem Mater,2018,30(2):436−446. doi: 10.1021/acs.chemmater.7b04353
    [34]
    SONG Z, WANG Q, GUO C, LI S, YAN W, JIAO W, QIU L, YAN X, LI R. Improved effect of Fe on the stable NiFe/Al2O3 catalyst in low-temperature dry reforming of methane[J]. Ind Eng Chem Res,2020,59(39):17250−17258. doi: 10.1021/acs.iecr.0c01204
    [35]
    杨浪浪, 孟凡会, 张鹏, 梁晓彤, 李忠. ZrCdOx/SAPO-18双功能催化剂催化CO2加氢合成低碳烯烃性能[J]. 无机化学学报,2021,37(3):448−456. doi: 10.11862/CJIC.2021.067

    YANG Lang-lang, MENG Fan-hui, ZHANG Peng, LIANG Xiao-tong, LI Zhong. Catalytic performance for CO2 hydrogenation to light olefins over ZrCdOx/SAPO-18 bifunctional catalyst[J]. Chin J Inorg Chem,2021,37(3):448−456. doi: 10.11862/CJIC.2021.067
    [36]
    ZHANG P, MENG F, YANG L, YANG G, LIANG X, LI Z. Syngas to olefins over a CrMnGa/SAPO-34 bifunctional catalyst: Effect of Cr and Cr/Mn ratio[J]. Ind Eng Chem Res,2021,60(36):13214−13222. doi: 10.1021/acs.iecr.1c02150
    [37]
    PARK Y, CHO K, KIM S. Thermoelectric characteristics of glass fibers coated with ZnO and Al-doped ZnO[J]. Mater Res Bull,2017,96:246−249. doi: 10.1016/j.materresbull.2017.03.007
    [38]
    JAIN M, MANJU, GUNDIMEDA A, KUMAR S, GUPTA G, WON S O, CHAE K H, VIJ A, THAKUR A. Defect induced broadband visible to near-infrared luminescence in ZnAl2O4 nanocrystals[J]. Appl Surf Sci,2019,480:945−950. doi: 10.1016/j.apsusc.2019.02.198
    [39]
    PAN L, WANG Y, YIN L, TOWNSEND P D. Influence of co-doping germanium ions on the long persistent near-infrared luminescence of ZnAl2O4: Cr3+[J]. Opt Mater,2021,119:111390. doi: 10.1016/j.optmat.2021.111390
    [40]
    PRIYA R, NEGI A, SINGLA S, PANDEY O P. Luminescent studies of Eu doped ZnAl2O4 spinels synthesized by low-temperature combustion route[J]. Optik,2020,204:164173. doi: 10.1016/j.ijleo.2020.164173
    [41]
    PRINS, ROEL. On the structure of γ-Al2O3[J]. J Catal,2020,392:336−346. doi: 10.1016/j.jcat.2020.10.010
    [42]
    QI J, HU X. The loss of ZnO as the support for metal catalysts by H2 reduction[J]. Phys Chem Chem Phys,2020,22(7):3953−3958. doi: 10.1039/C9CP06093F
    [43]
    JAIN M, MANJU, KUMAR R, WON S O, CHAE K H, VIJ A, THAKUR A. Defect states and kinetic parameter analysis of ZnAl2O4 nanocrystals by X-ray photoelectron spectroscopy and thermoluminescence[J]. Sci Rep,2020,10(1):385. doi: 10.1038/s41598-019-57227-8
    [44]
    XIE Z, LI Z, TANG P, SONG Y, ZHAO Z, KONG L, FAN X, XIAO X. The effect of oxygen vacancies on the coordinatively unsaturated Al-O acid-base pairs for propane dehydrogenation[J]. J Catal,2021,397:172−182. doi: 10.1016/j.jcat.2021.03.033
    [45]
    GUPTA P, SAHNI M, CHAUHAN S. Manifestation of multifunction capabilities by stabilizing cadmium together with zinc and aluminum in spinel oxide[J]. J Mater Sci: Mater Electron,2021,32(11):15317−15330. doi: 10.1007/s10854-021-06081-4
    [46]
    LI Y, HU J, XU J, ZHENG Y, CHEN M, WAN H, FU Q, YANG F, BAO X. Activation of CO and surface carbon species for conversion of syngas to light olefins on ZnCrOx-Al2O3 catalysts[J]. Appl Surf Sci,2019,494:353−360. doi: 10.1016/j.apsusc.2019.07.082
    [47]
    XU D, HONG X, LIU G. Highly dispersed metal doping to ZnZr oxide catalyst for CO2 hydrogenation to methanol: Insight into hydrogen spillover[J]. J Catal,2021,393:207−214. doi: 10.1016/j.jcat.2020.11.039
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1919) PDF downloads(68) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return