Volume 51 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
WANG Qing-jun, SUN Lai-zhi, CHEN Lei, YANG Shuang-xia, XIE Xin-ping, SI Hong-yu, ZHAO Bao-feng, XU Mei-rong, GAO Ming-jie, LI Tian-jin, HUA Dong-liang. Recent advance in directing synthesis of aromatic hydrocarbons from syngas via Fischer-Tropsch route[J]. Journal of Fuel Chemistry and Technology, 2023, 51(1): 52-66. doi: 10.19906/j.cnki.JFCT.2022066
Citation: WANG Qing-jun, SUN Lai-zhi, CHEN Lei, YANG Shuang-xia, XIE Xin-ping, SI Hong-yu, ZHAO Bao-feng, XU Mei-rong, GAO Ming-jie, LI Tian-jin, HUA Dong-liang. Recent advance in directing synthesis of aromatic hydrocarbons from syngas via Fischer-Tropsch route[J]. Journal of Fuel Chemistry and Technology, 2023, 51(1): 52-66. doi: 10.19906/j.cnki.JFCT.2022066

Recent advance in directing synthesis of aromatic hydrocarbons from syngas via Fischer-Tropsch route

doi: 10.19906/j.cnki.JFCT.2022066
Funds:  The project was supported by the National Natural Science Foundation of China (21908117), Key Research and Development Program of Shandong Province (2022CXGC010701), Youth Innovation Team Project of Colleges and Universities of Shandong Province (2019KJD002), Jinan Research Leader Workshop (2021GXRC095), Collaborative Innovation Fund of Qilu University of Technology (Shandong Academy of Sciences) (2020-CXY30).
  • Received Date: 2022-05-25
  • Accepted Date: 2022-07-14
  • Rev Recd Date: 2022-07-13
  • Available Online: 2022-08-11
  • Publish Date: 2023-01-10
  • Aromatics, as the important industrial basic chemicals, can be prepared by direct or indirect conversion of syngas. Compared with the indirect conversion method, the direct syngas to aromatics route (STA) has the advantages of high feedstock conversion, short process, and easy product separation. In this paper, we mainly introduce the progress of research on the direct syngas to aromatics by Fischer-Tropsch route, and focus on the effects of the metal oxide coupled molecular sieve bifunctional catalysts on the catalytic reaction performance, such as the selection of Fischer-Tropsch active components and additives, molecular sieve acidity modulation and pore structure regulation; Then we summarize the influence of reaction temperature, pressure, air velocity, hydrogen to carbon ratio and other parameters on the reaction performance. At last, based on the mechanisms of STA reaction and catalyst deactivation, the method for improving the activity and stability of STA catalysts is discussed.
  • loading
  • [1]
    YANG X, SU X, CHEN D, ZHANG T, HUANG Y. Direct conversion of syngas to aromatics: A review of recent studies[J]. Chin J Catal,2020,41(4):561−573. doi: 10.1016/S1872-2067(19)63346-2
    [2]
    LAI P-C, HSIEH C-Y, CHEN C-H, LIN Y-C. The role of non-framework Lewis acidic Al species of alkali-treated HZSM-5 in methanol aromatization[J]. Catalysts,2017,7(9):259. doi: 10.3390/catal7090259
    [3]
    COURTY P, GRUSON J F. Refining clean fuels for the future[J]. Oil Gas Sci Technol,2006,56(5):515−524.
    [4]
    王晗, 樊升, 王森, 董梅, 秦张峰, 樊卫斌, 王建国. 二氧化碳加氢制一些烃类化合物的研究进展[J]. 燃料化学学报,2021,49(11):1609−1619. doi: 10.1016/S1872-5813(21)60122-6

    WANG Han, FAN Sheng, WANG Sen, DONG Mei, QIN Zhang-feng, FAN Wei-bin, WANG Jian-guo. Research progresses in the hydrogenation of carbon dioxide to certain hydrocarbon products[J]. J Fuel Chem Technol,2021,49(11):1609−1619. doi: 10.1016/S1872-5813(21)60122-6
    [5]
    SKUTIL K, TANIEWSKI M. Indirect methane aromatization via oxidative coupling, products separation and aromatization steps[J]. Fuel Process Technol,2007,88(9):877−882. doi: 10.1016/j.fuproc.2007.04.006
    [6]
    HUANG K, MARAVELIAS C T. Synthesis and analysis of nonoxidative methane aromatization strategies[J]. Energy Technol,2019,8(8):1900650.
    [7]
    ZHU X, WANG Y, WANG G, HOU Y, YU M, YANG X, YIN F. Synergistic co-conversion of pentane and methanol to aromatics over bifunctional metal/ZSM-5 zeolite catalysts[J]. Microporous Mesoporous Mater,2021,320:111107. doi: 10.1016/j.micromeso.2021.111107
    [8]
    TZENG Y-Z, CHANG C-J, YANG M-C, TSAI M-J, TERAMURA K, TANAKA T, LEE H V, JUAN J C, WU J-Y, LIN Y-C. Zn-based metal-organic frameworks as sacrificial agents for the synthesis of Zn/ZSM-5 catalysts and their applications in the aromatization of methanol[J]. Catal Today,2021,375:70−78. doi: 10.1016/j.cattod.2020.01.038
    [9]
    MENON U, RAHMAN M, KHATIB S J. A critical literature review of the advances in methane dehydroaromatization over multifunctional metal-promoted zeolite catalysts[J]. Appl Catal A: Gen,2020,608:117870. doi: 10.1016/j.apcata.2020.117870
    [10]
    CHIN B L F, GORIN A, CHUA H B, TWAIQ F. Experimental investigation on tar produced from palm shells derived syngas using zeolite HZSM-5 catalyst[J]. J Energy Inst,2016,89(4):713−724. doi: 10.1016/j.joei.2015.04.005
    [11]
    CHEN Y, MU X, LUO X, SHI K, YANG G, WU T. Catalytic conversion of methane at low temperatures: A critical review[J]. Energy Technol,2019,8(8):1900750.
    [12]
    ZHU H-K, SONG G-L, LI Z-H. Computational study on thermodynamic properties of Fischer-Tropsch synthesis process[J]. Chin J Chem Phys,2019,32(5):586−596. doi: 10.1063/1674-0068/cjcp1903048
    [13]
    ZHAO B, ZHAI P, WANG P, LI J, LI T, PENG M, ZHAO M, HU G, YANG Y, LI Y-W, ZHANG Q, FAN W, MA D. Direct transformation of syngas to aromatics over Na-Zn-Fe5C2 and hierarchical HZSM-5 tandem catalysts[J]. Chem,2017,3(2):323−333. doi: 10.1016/j.chempr.2017.06.017
    [14]
    XU Y, WANG T, SHI C, LIU B, JIANG F, LIU X. Experimental investigation on the two-sided effect of acidic HZSM-5 on the catalytic performance of composite Fe-based Fischer-Tropsch catalysts and HZSM-5 zeolite in the production of aromatics from CO2/H2[J]. Ind Eng Chem Res,2020,59(18):8581−8591. doi: 10.1021/acs.iecr.0c00992
    [15]
    RIEDEL T, SCHULZ H, SCHAUB G, JUN K-W, HWANG J-S, LEE K-W. Fischer-Tropsch on iron with H2/CO and H2/CO2 as synthesis gases: The episodes of formation of the Fischer-Tropsch regime and construction of the catalyst[J]. Top Catal,2003,26(1/4):41−54.
    [16]
    DRY M E. High quality diesel via the Fischer-Tropsch process - a review[J]. J Chem Technol Biotechnol,2002,77(1):43−50. doi: 10.1002/jctb.527
    [17]
    TORRES GALVIS H M, BITTER J H, KHARE C B, RUITENBEEK M, DUGULAN A I, DE JONG K P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science,2012,335(6070):835−838. doi: 10.1126/science.1215614
    [18]
    李玉峰, 杨鹏举, 姜枫, 刘冰, 胥月兵, 刘小浩. 钾掺杂对Fe/GO催化合成气制α-烯烃的影响[J]. 燃料化学学报,2021,49(7):933−944. doi: 10.1016/S1872-5813(21)60063-4

    LI Yu-feng, YANG Peng-ju, JIANG Feng, LIU Bing, XU Yue-bing, LIU Xiao-hao. Effect of potassium on GO-modified large Fe3O4 microspheres for the production of α-olefins[J]. J Fuel Chem Technol,2021,49(7):933−944. doi: 10.1016/S1872-5813(21)60063-4
    [19]
    YANG T, CHENG L, LI N, LIU D. Effect of metal active sites on the product distribution over composite catalysts in the direct synthesis of aromatics from syngas[J]. Ind Eng Chem Res,2017,56(41):11763−11772. doi: 10.1021/acs.iecr.7b03450
    [20]
    DE SMIT E, WECKHUYSEN B M. The renaissance of iron-based Fischer-Tropsch synthesis: On the multifaceted catalyst deactivation behaviour[J]. Chem Soc Rev,2008,37(12):2758−2781. doi: 10.1039/b805427d
    [21]
    DAVIS B H. Fischer-Tropsch synthesis: Comparison of performances of iron and cobalt catalysts[J]. Ind Eng Chem Res,2007,46(26):8938−45. doi: 10.1021/ie0712434
    [22]
    CALLEJA G, DE LUCAS A, VAN GRIEKEN R. Cobalt/HZSM-5 zeolite catalyst for the conversion of syngas to hydrocarbons[J]. Appl Catal A: Gen,1991,68(1):11−29. doi: 10.1016/S0166-9834(00)84090-7
    [23]
    YANG X, WANG R, YANG J, QIAN W, ZHANG Y, LI X, HUANG Y, ZHANG T, CHEN D. Exploring the reaction paths in the consecutive Fe-based FT catalyst-zeolite process for syngas conversion[J]. ACS Catal,2020,10(6):3797−3806. doi: 10.1021/acscatal.9b05449
    [24]
    XU Y, LIU J, MA G, WANG J, LIN J, WANG H, ZHANG C, DING M. Effect of iron loading on acidity and performance of Fe/HZSM-5 catalyst for direct synthesis of aromatics from syngas[J]. Fuel,2018,228:1−9. doi: 10.1016/j.fuel.2018.04.151
    [25]
    NAWAZ M A, LI M, SAIF M, SONG G, WANG Z, LIU D. Harnessing the synergistic interplay of Fischer-Tropsch synthesis (Fe-Co) bimetallic oxides in Na-FeMnCo/HZSM-5 composite catalyst for syngas conversion to aromatic hydrocarbons[J]. ChemCatChem,2021,13(8):1966−1980. doi: 10.1002/cctc.202100024
    [26]
    吴怡祖. MnFe/H-ZSM-5混合催化剂上CO加氢合成芳烃[J]. 南京工业大学学报(自然科学版),1992,(4):18−24.

    WU Yi-zu. Hydrogenation of CO to aromatics over MnFe/H-ZSM-5 catalyst[J]. J Nanjing Tech Univ (Nat Sci Ed),1992,(4):18−24.
    [27]
    WANG T, XU Y, LI Y, XIN L, LIU B, JIANG F, LIU X. Sodium-mediated bimetallic Fe-Ni catalyst boosts stable and selective production of light aromatics over HZSM-5 zeolite[J]. ACS Catal,2021,11(6):3553−74. doi: 10.1021/acscatal.1c00169
    [28]
    ALAYAT A, ECHEVERRIA E, SOTOUDEHNIAKARANI F, DAVID N, ARMANDO G. Alumina coated silica nanosprings (ns) support based cobalt catalysts for liquid hydrocarbon fuel production from syngas[J]. Materials,2019,12(11):1810−1825.
    [29]
    席蓝萍, 邱宝成, 刘意, 张燚. 合成气直接制芳烃嵌入式Co@HZSM-5催化剂的研究[J]. 北京化工大学学报(自然科学版),2020,47(6):20−30.

    XI Lan-ping, QIU Bao-cheng, LIU Yi, ZHANG Yi. Cobalt-embedded zeolite catalysts for the direct conversion of syngas to aromatics[J]. J Beijing Univ Chem Technol (Nat Sci Ed),2020,47(6):20−30.
    [30]
    SUN T, LIN T, AN Y, GONG K, ZHONG L, SUN Y. Syngas conversion to aromatics over the Co2C-based catalyst and HZSM-5 via a tandem system[J]. Ind Eng Chem Res,2020,59(10):4419−27. doi: 10.1021/acs.iecr.0c00237
    [31]
    XU Y, WANG J, MA G, BAI J, DU Y, DING M. Direct synthesis of aromatics from syngas over Mo-modified Fe/HZSM-5 bifunctional catalyst[J]. Appl Catal A: Gen,2020,598:117589−117598.
    [32]
    LIU S, GUJAR A C, THOMAS P, TOGHIANI H, WHITE M G. Synthesis of gasoline-range hydrocarbons over Mo/HZSM-5 catalysts[J]. Appl Catal A: Gen,2009,357(1):18−25. doi: 10.1016/j.apcata.2008.12.033
    [33]
    LU Y, HU J, HAN J, YU F. Synthesis of gasoline-range hydrocarbons from nitrogen-rich syngas over a Mo/HZSM-5 bi-functional catalyst[J]. J Energy Inst,2016,89(4):782−792. doi: 10.1016/j.joei.2015.03.010
    [34]
    FU Y, NI Y, ZHU W, LIU Z. Enhancing syngas-to-aromatics performance of ZnO&H-ZSM-5 composite catalyst via Mn modulation[J]. J Catal,2020,383:97−102. doi: 10.1016/j.jcat.2019.12.044
    [35]
    LIU J, HE Y, YAN L, MA C, ZHANG C, XIANG H, WEN X, LI Y. Nano-ZrO2 as hydrogenation phase in bi-functional catalyst for syngas aromatization[J]. Fuel,2020,263:116803−116815.
    [36]
    CHENG K, ZHOU W, KANG J, HE S, SHI S, ZHANG Q, PAN Y, WEN W, WANG Y. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability[J]. Chem,2017,3(2):334−347. doi: 10.1016/j.chempr.2017.05.007
    [37]
    YANG Y. Effect of potassium promoter on precipitated iron-manganese catalyst for Fischer-Tropsch synthesis[J]. Appl Catal A: Gen,2004,266(2):181−194. doi: 10.1016/j.apcata.2004.02.018
    [38]
    WEBER J L, MARTíNEZ DEL MONTE D, BEERTHUIS R, DUFOUR J, MARTOS C, DE JONG K P, DE JONGH P E. Conversion of synthesis gas to aromatics at medium temperature with a fischer tropsch and ZSM-5 dual catalyst bed[J]. Catal Today,2021,369:175−183. doi: 10.1016/j.cattod.2020.05.016
    [39]
    CHENG L, MENG C, YANG T, LI N, LIU D. One-step synthesis of aromatics from syngas over K-modified FeMnO/MoNi-ZSM-5[J]. Energy Fuels,2018,32(9):9756−9762. doi: 10.1021/acs.energyfuels.8b01965
    [40]
    XU H, LI M, NAWAZ M A, LIU D. Doping of K and Zn elements in FeZr-Ni/ZSM-5: Highly selective catalyst for syngas to aromatics[J]. Catal Commun,2019,121:95−99. doi: 10.1016/j.catcom.2019.01.001
    [41]
    LI M, NAWAZ M A, SONG G, ZAMAN W Q, LIU D. Influential role of elemental migration in a composite iron-zeolite catalyst for the synthesis of aromatics from syngas[J]. Ind Eng Chem Res,2020,59(19):9043−9054. doi: 10.1021/acs.iecr.0c01282
    [42]
    YANG S, LI M, NAWAZ M A, SONG G, XIAO W, WANG Z, LIU D. High selectivity to aromatics by a Mg and Na Co-modified catalyst in direct conversion of syngas[J]. ACS Omega,2020,5(20):11701−9. doi: 10.1021/acsomega.0c01007
    [43]
    ZHANG Q, KANG J, WANG Y. Development of novel catalysts for Fischer-Tropsch synthesis: Tuning the product selectivity[J]. ChemCatChem,2010,2(9):1030−1058. doi: 10.1002/cctc.201000071
    [44]
    KREITMAN K. Manganese-oxide-supported iron Fischer-Tropsch synthesis catalysts: Physical and catalytic characterization[J]. J Catal,1987,105(2):319−334. doi: 10.1016/0021-9517(87)90061-3
    [45]
    BAI L, XIANG H-W, LI Y-W, HAN Y-Z, ZHONG B. Slurry phase Fischer-Tropsch synthesis over manganese-promoted iron ultrafine particle catalyst[J]. Fuel,2002,81(11/12):1577−1581.
    [46]
    王德生, 曾海生, 关乃佳. Fe/MnO-ZnZSM-5双功能催化剂上合成气直接转化为芳烃的反应[J]. 催化学报,2002,23(4):333−335. doi: 10.3321/j.issn:0253-9837.2002.04.012

    WANG De-sheng, ZENG Hai-sheng, GUAN Nai-jia. Direct conversion of syngas into aromatics over bifunctional Fe/MnO-ZnZSM-5 catalyst[J]. Chin J Catal,2002,23(4):333−335. doi: 10.3321/j.issn:0253-9837.2002.04.012
    [47]
    席蓝萍. 费托合成产物分布的调控—Co基催化剂的研究[D]. 北京: 北京化工大学, 2020.

    XI Lan-ping. Regulation of product distribution in Pheto synthesis-Co-based catalysts[D]. Beijing: Beijing University of Chemical Technology, 2020.
    [48]
    XU Y, WANG J, MA G, ZHANG J, DING M. Hollow zeolite nanoparticles combined with Fe3O4@MnO2 tandem catalyst for converting syngas to aromatics-rich gasoline[J]. ACS Appl Nano Mater,2020,3(3):2857−2866. doi: 10.1021/acsanm.0c00123
    [49]
    WEI J, GE Q, YAO R, WEN Z, FANG C, GUO L, XU H, SUN J. Directly converting CO2 into a gasoline fuel[J]. Nat Commun,2017,8:15174. doi: 10.1038/ncomms15174
    [50]
    PLANA-PALLEJà J, ABELLó S, BERRUECO C, MONTANÉ D. Effect of zeolite acidity and mesoporosity on the activity of Fischer-Tropsch Fe/ZSM-5 bifunctional catalysts[J]. Appl Catal A: Gen,2016,515:126−135. doi: 10.1016/j.apcata.2016.02.004
    [51]
    文承彦, 王晨光, 刘琪英, 陈伦刚, 马隆龙, 吕微. Fe/ZSM-5催化剂的酸性与孔隙特性对合成气直接制备芳烃的影响[J]. 新能源进展,2018,6(3):222−228. doi: 10.3969/j.issn.2095-560X.2018.03.009

    WEN Cheng-yan, WANG Chen-guang, LIU Qi-ying, CHEN Lun-gang, MA Long-long, LV Wei. Effect of acidity and pore characteristics of Fe/ZSM-5 catalyst on direct transformation from syngas to aromatics[J]. Adv Energy Plann,2018,6(3):222−228. doi: 10.3969/j.issn.2095-560X.2018.03.009
    [52]
    LI J, HAN D, HE T, LIU G, ZI Z, WANG Z, WU J, WU J. Nanocrystal H[Fe, Al]ZSM-5 zeolites with different silica-alumina composition for conversion of dimethyl ether to gasoline[J]. Fuel Process Technol,2019,191:104−110. doi: 10.1016/j.fuproc.2019.03.029
    [53]
    YANG X, SU X, LIANG B, ZHANG Y, DUAN H, MA J, HUANG Y, ZHANG T. The influence of alkali-treated zeolite on the oxide-zeolite syngas conversion process[J]. Catal Sci Technol,2018,8(17):4338−4348. doi: 10.1039/C8CY01332B
    [54]
    HE J, CHEN D, LI N, XU Q, LI H, HE J, LU J. Controlled fabrication of mesoporous ZSM-5 zeolite-supported PdCu alloy nanoparticles for complete oxidation of toluene[J]. Appl Catal B: Environ,2020,265:118560. doi: 10.1016/j.apcatb.2019.118560
    [55]
    XU Y, LIU J, WANG J, MA G, LIN J, YANG Y, LI Y, ZHANG C, DING M. Selective conversion of syngas to aromatics over Fe3O4@MnO2 and hollow HZSM-5 bifunctional catalysts[J]. ACS Catal,2019,9(6):5147−5156. doi: 10.1021/acscatal.9b01045
    [56]
    WEN C, WANG C, CHEN L, ZHANG X, LIU Q, MA L. Effect of hierarchical ZSM-5 zeolite support on direct transformation from syngas to aromatics over the iron-based catalyst[J]. Fuel,2019,244:492−498. doi: 10.1016/j.fuel.2019.02.041
    [57]
    YANG J, PAN X, JIAO F, LI J, BAO X. Direct conversion of syngas to aromatics[J]. Chem Commun (Camb),2017,53(81):11146−11149. doi: 10.1039/C7CC04768A
    [58]
    MA Y, CAI D, LI Y, WANG N, MUHAMMAD U, CARLSSON A, TANG D, QIAN W, WANG Y, SU D, WEI F. The influence of straight pore blockage on the selectivity of methanol to aromatics in nanosized Zn/ZSM-5: An atomic Cs-corrected STEM analysis study[J]. RSC Adv,2016,6(78):74797−74801. doi: 10.1039/C6RA19073A
    [59]
    XU Y, LIU J, MA G, WANG J, WANG Q, LIN J, WANG H, ZHANG C, DING M. Synthesis of aromatics from syngas over FeMnK/SiO2 and HZSM-5 tandem catalysts[J]. Mol Catal,2018,454:104−113. doi: 10.1016/j.mcat.2018.05.019
    [60]
    刘大鹏. 合成气直接催化转化制芳烃[D]. 无锡: 江南大学, 2018.

    LIU Da-peng. Direct synthesis of aromatic formations from syngas[D]. Wuxi: Jiangnan University, 2018.
    [61]
    YAN Q, LU Y, WAN C, HAN J, RODRIGUEZ J, YIN J-J, YU F. Synthesis of aromatic-rich Gasoline-range hydrocarbons from biomass-derived syngas over a Pd-promoted Fe/HZSM-5 catalyst[J]. Energy Fuels,2014,28(3):2027−34. doi: 10.1021/ef402507u
    [62]
    ZHANG P, TAN L, YANG G, TSUBAKI N. One-pass selective conversion of syngas to para-xylene[J]. Chem Sci,2017,8(12):7941−7946. doi: 10.1039/C7SC03427J
    [63]
    XU Y, LIU D, LIU X. Conversion of syngas toward aromatics over hybrid Fe-based Fischer-Tropsch catalysts and HZSM-5 zeolites[J]. Appl Catal A: Gen,2018,552:168−183. doi: 10.1016/j.apcata.2018.01.012
    [64]
    WANG S, WU T, LIN J, TIAN J, JI Y, PEI Y, YAN S, QIAO M, XU H, ZONG B. FeK on 3D graphene-zeolite tandem catalyst with high efficiency and versatility in direct CO2 conversion to aromatics[J]. ACS Sustainable Chem Eng,2019,7(21):17825−17833. doi: 10.1021/acssuschemeng.9b04328
    [65]
    YAN Q, DOAN P T, TOGHIANI H, GUJAR A C, WHITE M G. Synthesis gas to hydrocarbons over CuO-CoO-Cr2O3/H-ZSM-5 bifunctional catalysts[J]. J Phys Chem C,2008,112(31):11847−11858. doi: 10.1021/jp801640c
    [66]
    NIU X, GAO J, WANG K, MIAO Q, DONG M, WANG G, FAN W, QIN Z, WANG J. Influence of crystal size on the catalytic performance of H-ZSM-5 and Zn/H-ZSM-5 in the conversion of methanol to aromatics[J]. Fuel Process Technol,2017,157:99−107. doi: 10.1016/j.fuproc.2016.12.006
    [67]
    WEBER J L, KRANS N A, HOFMANN J P, HENSEN E J M, ZECEVIC J, DE JONGH P E, DE JONG K P. Effect of proximity and support material on deactivation of bifunctional catalysts for the conversion of synthesis gas to olefins and aromatics[J]. Catal Today,2020,342:161−166. doi: 10.1016/j.cattod.2019.02.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3320) PDF downloads(127) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return