Volume 51 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
TANG Zi-yue, CHEN Wei, CHEN Xu, CHEN Ying-quan, HU Qiang, CHENG Wei, YANG Hai-ping, CHEN Han-ping. Pyrolysis characteristics and kinetics of co-pyrolysis of microalgae and plastics[J]. Journal of Fuel Chemistry and Technology, 2023, 51(8): 1145-1154. doi: 10.19906/j.cnki.JFCT.2023008
Citation: TANG Zi-yue, CHEN Wei, CHEN Xu, CHEN Ying-quan, HU Qiang, CHENG Wei, YANG Hai-ping, CHEN Han-ping. Pyrolysis characteristics and kinetics of co-pyrolysis of microalgae and plastics[J]. Journal of Fuel Chemistry and Technology, 2023, 51(8): 1145-1154. doi: 10.19906/j.cnki.JFCT.2023008

Pyrolysis characteristics and kinetics of co-pyrolysis of microalgae and plastics

doi: 10.19906/j.cnki.JFCT.2023008
Funds:  The project was supported by the National Natural Science Foundation of China Outstanding Youth Program (52125601) and National Key Research and Development Program (2018YFB1501403)
  • Received Date: 2022-10-29
  • Accepted Date: 2022-12-27
  • Rev Recd Date: 2022-12-07
  • Available Online: 2023-01-18
  • Publish Date: 2023-08-01
  • Plastics as co-feeding can effectively improve the quality of microalgae pyrolysis oil. The effects of co-pyrolysis of microalgae and polyethylene (PE), polystyrene (PS) and polypropylene (PP) on pyrolysis characteristics and kinetics were investigated by TG-FTIR. There is an interaction between microalgae and plastic, which increases the pyrolysis temperature of plastic and inhibits the formation of coke. PE can effectively reduce the residual yield, while the pyrolysis temperature of PS obviously transfers to high temperature during co-pyrolysis. In addition, co-pyrolysis reduces the average activation energy, especially low proportion of plastic. Besides, the co-pyrolysis of microalgae with PE promotes C−C fracture to release CO2 and −CH3 and C=C−H. However, the co-pyrolysis of microalgae and PP inhibits the release of CO2, and intensifies the formation of aromatic hydrocarbon C−H from polypropylene. Moreover, the co-pyrolysis of microalgae and PS can slightly promote the formation of C=O and NH3, and aggravate the hydrogen transfer of microalgae to break aromatic ring of polystyrene and release CH3.
  • loading
  • [1]
    CHEN X, LI S J, LIU Z H, CHEN Y Q, YANG H P, WANG X H, CHE Q F, CHEN W, CHEN H P. Pyrolysis characteristics of lignocellulosic biomass components in the presence of CaO[J]. Bioresour Technol,2019,287:7.
    [2]
    ROSS, A B, P BILLER, M L KUBACKI, H LI, A LEA-LANGTON, J M JONES. Hydrothermal processing of microalgae using alkali and organic acids[J]. Fuel,2010,89(9):2234−2243. doi: 10.1016/j.fuel.2010.01.025
    [3]
    LI F H, SRIKANTH C S, SANKAR B. A review on catalytic pyrolysis of microalgae to high-quality bio-oil with low oxygeneous and nitrogenous compounds[J]. Renewable Sustainable Energy Rev,2019,108:481−497. doi: 10.1016/j.rser.2019.03.026
    [4]
    BACH, QUANG-VU, CHEN W H. Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): A state-of-the-art review[J]. Bioresour Technol,2017,246:88−100. doi: 10.1016/j.biortech.2017.06.087
    [5]
    AYSU T, MAROTO-VALER M M, SANNA A. Ceria promoted deoxygenation and denitrogenation of Thalassiosira weissflogii and its model compounds by catalytic in-situ pyrolysis[J]. Bioresour Technol,2016,208:140−148. doi: 10.1016/j.biortech.2016.02.050
    [6]
    AZIZI K, MOSTAFA K M, HAMED A N. A review on bio-fuel production from microalgal biomass by using pyrolysis method[J]. Renewable Sustainable Energy Rev,2018,82:3046−3059. doi: 10.1016/j.rser.2017.10.033
    [7]
    张泽, 赵洪君, 孟洁, 洪晨, 李益飞. 生物质的热解及生物油提质的研究进展[J]. 环境工程,2021,39(3):161−171. doi: 10.13205/j.hjgc.202103023

    ZHANG Ze, ZHAO Hong-Jun, MENG Jie, HONG Chen, LI Yi-Fei. Reseach progess of biomass pyrolysis and bio oil upgrading[J]. Environ Eng,2021,39(3):161−171. doi: 10.13205/j.hjgc.202103023
    [8]
    CAMPANELLA A, HAROLD M P. Fast pyrolysis of microalgae in a falling solids reactor: Effects of process variables and zeolite catalysts[J]. Biomass Bioenergy,2012,46:218−232. doi: 10.1016/j.biombioe.2012.08.023
    [9]
    王文燕, 张光义, 孟辉波, 朱新宇, 张建岭, 许光文. 糠醛渣热解特性及热解挥发产物对其燃烧烟气原位控氮作用[J]. 化工学报,2021,72(11):5770−5778. doi: 10.11949/0438-1157.20211028

    WANG Wen-yan, ZHANG Guang-yi, MENG Hui-bo, ZHU Xin-yu, ZHANG Jian-ling, XU Guang-wen. Furfural residue pyrolysis characteristics and the effect of its pyrolysis products on in-situ control of NOx emission from its combustion flue gas[J]. CIESC J,2021,72(11):5770−5778. doi: 10.11949/0438-1157.20211028
    [10]
    NANDAKUMAR T, DWIVEDI U, PANT K K. KUMAR S, BALARAMAN E. Wheat straw/HDPE co-reaction synergy and enriched production of aromatics and light olefins via catalytic co-pyrolysis over Mn, Ni, and Zn metal modified HZSM-5[J]. Catal Today,2023,408:111−126.
    [11]
    TIAN F J, YU J L, MCKENZIE L J, J HAYASHI, LI C Z. Conversion of fuel-N into HCN and NH3 during the pyrolysis and gasification in steam: A comparative study of coal and biomass[J]. Energy Fuels,2007,21(2):517−521. doi: 10.1021/ef060415r
    [12]
    RANJEET K M, KAUSTUBHA M. Co-pyrolysis of waste biomass and waste plastics (polystyrene and waste nitrile gloves) into renewable fuel and value-added chemicals[J]. Carbon Res Conv,2020,3:145−155. doi: 10.1016/j.crcon.2020.11.001
    [13]
    毛俏婷, 胡俊豪, 赵雨佳, 闫舒航, 杨海平, 陈汉平. 生物质和废塑料混合热解协同特性研究[J]. 燃料化学学报,2020,48(3):286−292. doi: 10.3969/j.issn.0253-2409.2020.03.004

    (MAO Qiao-ting, HU Jun-hao, ZHAO Yu-jia, YAN Shu-hang, YANG Hai-ping, CHEN Han-ping. Synergistic effect during biomass and waste plastics co-pyrolysis[J]. J Fuel Chem and Technol,2020,48(3):286−292. doi: 10.3969/j.issn.0253-2409.2020.03.004
    [14]
    RAHMAN, M H, P R BHOI, A SAHA, V PATIL, S ADHIKARI. Thermo-catalytic co-pyrolysis of biomass and high-density polyethylene for improving the yield and quality of pyrolysis liquid[J]. Energy,2021,225:120231.
    [15]
    CHEN W M, SHI S K, CHEN M Z, ZHOU X Y. Fast co-pyrolysis of waste newspaper with high-density polyethylene for high yields of alcohols and hydrocarbons[J]. Waste Manage,2017,67:155−162. doi: 10.1016/j.wasman.2017.05.032
    [16]
    YUAN H R, FAN H G, SHAN R, HE M Y, GU J, CHEN Y. Study of synergistic effects during co-pyrolysis of cellulose and high-density polyethylene at various ratios[J]. Energy Conv Manag,2018,157:517−526. doi: 10.1016/j.enconman.2017.12.038
    [17]
    TANG Z Y, CHEN W, HU J H, LI S Q, CHEN Y Q, YANG H P, CHEN H P. Co-pyrolysis of microalgae with low-density polyethylene (LDPE) for deoxygenation and denitrification[J]. Bioresour Technol,2020,311:123502. doi: 10.1016/j.biortech.2020.123502
    [18]
    DUAN P G, JIN B B, XU Y P, WANG F. Co-pyrolysis of microalgae and waste rubber tire in supercritical ethanol[J]. Chem Eng J, 2015. 269(Supplement C): 262−271.
    [19]
    XU S N, CAO B, B B UZOEJINWA, E A ODEY, WANG S, SHANG H, LI C H, HU Y M, WANG Q, J N NWAKAIRE. Synergistic effects of catalytic co-pyrolysis of macroalgae with waste plastics[J]. Process Saf Environ Protect,2020,137:34−48. doi: 10.1016/j.psep.2020.02.001
    [20]
    WU X Y, WU Y L, WU K J, CHEN Y, HU H S, YANG M D. Study on pyrolytic kinetics and behavior: The co-pyrolysis of microalgae and polypropylene[J]. Bioresour Technol,2015,192:522−528. doi: 10.1016/j.biortech.2015.06.029
    [21]
    CHEN R, ZHANG S, YANG X, LI G, ZHOU H, LI Q, ZHANG Y. Thermal behaviour and kinetic study of co-pyrolysis of microalgae with different plastics[J]. Waste Manage,2021,126:331−339. doi: 10.1016/j.wasman.2021.03.001
    [22]
    TANG Z Y, CHEN W, CHEN Y Q, YANG H P, CHEN H P. Co-pyrolysis of microalgae and plastic: Characteristics and interaction effects[J]. Bioresour Technol,2019,274:145−152. doi: 10.1016/j.biortech.2018.11.083
    [23]
    ABOUL-ENEIN, ATEYYA A, FATHI S S, MOHAMED A B. Co-production of hydrogen and carbon nanomaterials using NiCu/SBA15 catalysts by pyrolysis of a wax by-product: Effect of Ni-Cu loading on the catalytic activity[J]. Int J Hydrog Energy,2019,44(59):31104−31120. doi: 10.1016/j.ijhydene.2019.10.042
    [24]
    HU Q, TANG Z Y, YAO D D, YANG H P, SHAO J A, CHEN H P. Thermal behavior, kinetics and gas evolution characteristics for the co-pyrolysis of real-world plastic and tyre wastes[J]. J Clean Prod,2020,260:121102.
    [25]
    WANG X, SHENG L L, YANG X Y. Pyrolysis characteristics and pathways of protein, lipid and carbohydrate isolated from microalgae Nannochloropsis sp[J]. Bioresour Technol,2017,229:119−125. doi: 10.1016/j.biortech.2017.01.018
    [26]
    WANG X, TANG X H, YANG X Y. Pyrolysis mechanism of microalgae Nannochloropsis sp. based on model compounds and their interaction[J]. Energy Conv Manag,2017,140:203−210. doi: 10.1016/j.enconman.2017.02.058
    [27]
    CHEN H P, XIE Y P, CHEN W, XIA M W, LI K X, CHEN Z Q, CHEN Y Q, YANG H P. Investigation on co-pyrolysis of lignocellulosic biomass and amino acids using TG-FTIR and Py-GC/MS[J]. Energy Conv Manag,2019,196:320−329. doi: 10.1016/j.enconman.2019.06.010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (379) PDF downloads(87) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return