Volume 51 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
WANG Shao-qing, HAN Yu, YI Wei-ming, LI Zhi-he, WAN Zhen, JIAO Yan. Catalytic pyrolysis of lignin for production of mono-aromatic hydrocarbons over supported hierarchical zeolite[J]. Journal of Fuel Chemistry and Technology, 2023, 51(8): 1096-1105. doi: 10.19906/j.cnki.JFCT.2023009
Citation: WANG Shao-qing, HAN Yu, YI Wei-ming, LI Zhi-he, WAN Zhen, JIAO Yan. Catalytic pyrolysis of lignin for production of mono-aromatic hydrocarbons over supported hierarchical zeolite[J]. Journal of Fuel Chemistry and Technology, 2023, 51(8): 1096-1105. doi: 10.19906/j.cnki.JFCT.2023009

Catalytic pyrolysis of lignin for production of mono-aromatic hydrocarbons over supported hierarchical zeolite

doi: 10.19906/j.cnki.JFCT.2023009
Funds:  The project was supported by Natural Science Foundation of Shandong Province (ZR2021QE132), National Natural Science Foundation of China (52176192, 52130610) and the Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development (E239kf0701).
  • Received Date: 2022-10-26
  • Accepted Date: 2023-01-11
  • Rev Recd Date: 2022-12-02
  • Available Online: 2023-02-10
  • Publish Date: 2023-08-01
  • Mono-aromatic hydrocarbons (MAHs) are important basic raw materials for organic chemicals industry. Catalytic pyrolysis of lignin can produce MAHs. However, the complicated components of pyrolysis vapours can result in rapid coke deactivation of the catalyst and the lower yields of mono-aromatic hydrocarbons. The lignin pyrolysis vapours were upgraded to MAHs by Ni or Ga modified hierarchical zeolite (HZSM-5@Al-SBA-15). The distribution of catalytic pyrolysis products and the coke deposition behavior of catalysts were investigated in a fixed bed reactor. Results showed that the hierarchical zeolites had the developed pore structure, which could effectively improve the mass transfer and diffusion performance of lignin pyrolysis vapours. Moreover, the introduction of metal elements and mesoporous shell modulated the acidity distribution of the catalysts. Compared with the pure HZSM-5, the relative content of MAHs (78.63%), Ga/HS (77.15%) and Ni-Ga/HS (72.44%) were increased, and the content of poly-aromatic hydrocarbons was effectively inhibited. The content of CO2 in the gas products increased, indicating that the catalyst could promote the decarboxylation reaction. In addition, the content of coke deposition with supported hierarchical zeolite catalysts was significantly reduced, which were Ni/HS (7.79%), Ga/HS (6.37%) and Ni-Ga/HS (6.63%), respectively. This indicated that the introduction of metal components improved the anti-coke performance of the catalysts. Therefore, the supported hierarchical zeolite based on metal modification and pore optimization could upgrade the lignin pyrolysis vapours into high quality aromatic hydrocarbons. This study provides a basic reference for the high value utilization of lignin waste.
  • loading
  • [1]
    SETHUPATHY S, MORALES G M, GAO L, WANG H L, YANG B, JIANG J X, SUN J Z, ZHU D C. Lignin valorization: status, challenges and opportunities[J]. Bioresour Technol,2022,347:126696. doi: 10.1016/j.biortech.2022.126696
    [2]
    BANU J R, PREETHI, KAVITHA S, TYAGI V K, GUNASEKARAN M, KARTHIKEYAN O P, KUNAR G. Lignocellulosic biomass based biorefinery: A successful platform towards circular bioeconomy[J]. Fuel,2021,302:121086. doi: 10.1016/j.fuel.2021.121086
    [3]
    HU J, ZHANG Q, LEE D J. Kraft lignin biorefinery: A perspective[J]. Bioresour Technol,2018,247:1181−1183. doi: 10.1016/j.biortech.2017.08.169
    [4]
    DAI G X, WANG S R, HUANG S Q, ZOU Q. Enhancement of aromatics production from catalytic pyrolysis of biomass over HZSM-5 modified by chemical liquid depositio[J]. J Anal Appl Pyrolysis,2018,134:439−445. doi: 10.1016/j.jaap.2018.07.010
    [5]
    赵勃, 吴凯, 仲惟鹏, 魏刚, 胡宗华, 郑文广, 阮慧锋, 严新明, 马颖, 王博, 江天霖, 张会岩. 木质素炭与 ZSM-5 联合催化热解木质素制备芳烃实验研究[J]. 燃料化学学报,2021,49(3):303−310.

    ZHAO Bo, WU Kai, ZHONG Li-peng, WEI Gang, HU Zong-hua, ZHENG Wen-guang, RUAN Hui-feng, YAN Xin-ming, MA Yin, WANG Bo, JIANG Tian-lin, ZHANG Hui-yan. Experimental study on catalytic pyrolysis of lignin under char and ZSM-5 for preparation of aromatics[J]. J Fuel Chem Technol,2021,49(3):303−310.
    [6]
    JIN T, WANG H T, PENG J B, WU Y S, HUANG Z, TIAN X, DING M Y. Catalytic pyrolysis of lignin with metal-modified HZSM-5 as catalysts for monocyclic aromatic hydrocarbons production[J]. Fuel Process Technol,2022,230:107201. doi: 10.1016/j.fuproc.2022.107201
    [7]
    BHOI P R, OUEDRAOGO A S, SOLOIU V, QUIRIONO R. Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis[J]. Renewable Sustainable Energy Rev,2020,121:109676. doi: 10.1016/j.rser.2019.109676
    [8]
    ZHANG H Y, LUO B B, WU K, ZHAO B, YU J J, WANG S Y TAO Y J. Ex-situ catalytic pyrolysis of lignin using lignin-carbon catalyst combined with HZSM-5 to improve the yield of high-quality liquid fuels[J]. Fuel,2022,318:123635. doi: 10.1016/j.fuel.2022.123635
    [9]
    张雷, 王海英, 韩洪晶, 陈彦广, 王程昊. 木质素催化热解用催化剂的研究进展[J]. 化工进展,2022,41(5):2429−2440.

    ZHANG Lei, WANG Hai-ying, HAN Hong-jing, CHEN Yan-guang, WANG Cheng-hao. Development of catalysts for catalytic pyrolysis of lignin[J]. Chem Ind Eng Prog,2022,41(5):2429−2440.
    [10]
    LIU R, SARKER M, RAHMAN M M, LI C, CHAI M Y, NISHU, COTILLON R, SCOTT N R. Multi-scale complexities of solid acid catalysts in the catalytic fast pyrolysis of biomass for bio-oil production-A review[J]. Prog Energy Combust,2020,80:100852. doi: 10.1016/j.pecs.2020.100852
    [11]
    YANG H, HAN T, YANG W, SANDSTROM L, JONSSON P G. Influence of the porosity and acidic properties of aluminosilicate catalysts on coke formation during the catalytic pyrolysis of lignin[J]. J Anal Appl Pyrolysis,2022,165:105536. doi: 10.1016/j.jaap.2022.105536
    [12]
    MARDIANA S, AZHARI N J, ILMI T, KADJA G T M. Hierarchical zeolite for biomass conversion to biofuel: A review[J]. Fuel,2022,309:122119. doi: 10.1016/j.fuel.2021.122119
    [13]
    SUN H R, LUO Z Y, WANG W B, LI S M, XUE S. Porosity roles of micro-mesostructured ZSM-5 in catalytic fast pyrolysis of cellulolytic enzyme lignin for aromatics[J]. Energy Convers Manage,2021,247:114753. doi: 10.1016/j.enconman.2021.114753
    [14]
    PALIZDAR A, SADRAMELI S M. Catalytic upgrading of biomass pyrolysis oil over tailored hierarchical MFI zeolite: Effect of porosity enhancement and porosity-acidity interaction on deoxygenation reactions[J]. Renewable Energy,2020,148:674−688. doi: 10.1016/j.renene.2019.10.155
    [15]
    ESCHENBACHER A, GOODARZI F, SARAEIAN A, KEGNAS S, SHANKS B S, JENSEN A D. Performance of mesoporous HZSM-5 and Silicalite-1 coated mesoporous HZSM-5 catalysts for deoxygenation of straw fast pyrolysis vapors[J]. J Anal Appl Pyrolysis,2020,145:104712. doi: 10.1016/j.jaap.2019.104712
    [16]
    XUE S, LUO Z, WANG W, LI S M, SUN H R, ZHOU Q G, LIANG X R. Preparation of aromatics from catalytic pyrolysis of enzymatic lignin over double-layer metal supported core-shell catalyst[J]. J Anal Appl Pyrolysis,2020,150:104884. doi: 10.1016/j.jaap.2020.104884
    [17]
    QIAO K, ZHOU F, HAN Z, FU J, MA H X, WU G. Synthesis and physicochemical characterization of hierarchical ZSM-5: Effect of organosilanes on the catalyst properties and performance in the catalytic fast pyrolysis of biomass[J]. Microporous Mesoporous Mater,2019,274:190−197. doi: 10.1016/j.micromeso.2018.07.028
    [18]
    YANG G X, YANG J T, HUANG D L, ZHOU W L, YANG L M, LV P M, YI W M, SUN Y M, YAN B B. BTX production from rice husk by fast catalytic pyrolysis over a Ga-modified ZSM-5/SBA-15 catalyst[J]. New J Chem,2021,45(8):3809−3816. doi: 10.1039/D0NJ04961A
    [19]
    HU C S, ZHANG H Y, XIAO R. Catalytic fast pyrolysis of biomass over core-shell HZSM-5@ silicalite-1 in a bench-scale two-stage fluidized-bed/fixed-bed reactor[J]. J Anal Appl Pyrolysis,2018,136:27−34. doi: 10.1016/j.jaap.2018.11.005
    [20]
    SU X F, WANG G L, BAI X F, WU W, XIAO L F, FANG Y J, ZHANG J W. Synthesis of nanosized HZSM-5 zeolites isomorphously substituted by gallium and their catalytic performance in the aromatization[J]. Chem Eng J,2016,293:365−375. doi: 10.1016/j.cej.2016.02.088
    [21]
    王文博. 复合孔结构分子筛催化热解木质纤维素类生物质及其酚类衍生物的性能研究[D]. 杭州: 浙江大学, 2020.

    WANG Wen-bo. Research on the performance of catalytic fastpyrolysis of lignocellulosic biomass and its phenolicderivatives by composite meso-structured zeolite[D]. Hangzhou: Zhejiang University, 2020.
    [22]
    田宝良. 新型核壳结构ZSM-5@MCM-41的合成及其催化性能研究[D]. 重庆: 重庆理工大学, 2017.

    TIAN Bao-liang. The Synthesis and CatalyticPerformance of New core-shellstructured ZSM-5@MCM-41[D]. Chongqing: Chongqing University of Technology, 2017.
    [23]
    LI X, REZAEI F, LUDLOW D K, ROWNAGHI A A. Synthesis of SAPO-34@ZSM-5 and SAPO-34@silicalite-1 core-shell zeolite composites for ethanol dehydration[J]. Ind Eng Chem Res,2018,57(5):1446−1453. doi: 10.1021/acs.iecr.7b05075
    [24]
    CHEN X, CHEN Y Q, YANG H P, WANG X H, CHE Q F, CHEN W, CEHN H P. Catalytic fast pyrolysis of biomass: Selective deoxygenation to balance the quality and yield of bio-oil[J]. Bioresour Technol,2019,273:153−158. doi: 10.1016/j.biortech.2018.11.008
    [25]
    KIM Y M, KANG B S, HAN T U, KIM S, JUNG S C, KIM S C, JEON J K, PARK Y W. Catalytic pyrolysis of organosolv and klason lignin over Al-SBA-15[J]. J Nanosci Nanotechnol,2018,18(2):1423−1426. doi: 10.1166/jnn.2018.14906
    [26]
    XUE X F, ZHANG C S, XIA D, WANG Y G, LIANG J, SUN Y F. Dual-catalyst catalytic pyrolysis of poplar sawdust: A systematic study on first-layered catalysts[J]. Chem Eng J,2022,431:134251. doi: 10.1016/j.cej.2021.134251
    [27]
    WANG J, ZHONG Z P, DING K, LI M, HAO N J, MENG X Z, RUAN R, RAGAUSKAS A J. Catalytic fast co-pyrolysis of bamboo sawdust and waste tire using a tandem reactor with cascade bubbling fluidized bed and fixed bed system[J]. Energy Convers Manage,2019,180:60−71. doi: 10.1016/j.enconman.2018.10.056
    [28]
    ZHENG Y W, WANG F, YANG X Q, HUANG Y B, LIU C, ZHENG Z, GU J Y. Study on aromatics production via the catalytic pyrolysis vapor upgrading of biomass using metal-loaded modified H-ZSM-5[J]. J Anal Appl Pyrolysis,2017,126:169−179. doi: 10.1016/j.jaap.2017.06.011
    [29]
    XUE Y, SHARMA A, HUO J J, QU W D, BAI X L. Low-pressure two-stage catalytic hydropyrolysis of lignin and lignin-derived phenolic monomers using zeolite-based bifunctional catalysts[J]. J Anal Appl Pyrolysis,2020,146:104779. doi: 10.1016/j.jaap.2020.104779
    [30]
    LIANG J, SHAN G C, SUN Y F. Catalytic fast pyrolysis of lignocellulosic biomass: Critical role of zeolite catalysts[J]. Renewable Sustainable Energy Rev,2021,139:110707. doi: 10.1016/j.rser.2021.110707
    [31]
    DOUKEH R, BOMBOS M, BOMBOS D, VASILIEVICI G, RADU E, OPRESCU E E. Pyrolysis of digestate from anaerobic digestion on tungsten oxide catalyst[J]. React Kinet Mech Catal,2021,132(2):829−838. doi: 10.1007/s11144-021-01952-7
    [32]
    ZHENG Y W, TAO L, YANG X Q, HUANG Y B, LIU C, ZHENG Z F. Comparative study on pyrolysis and catalytic pyrolysis upgrading of biomass model compounds: Thermochemical behaviors, kinetics, and aromatic hydrocarbon formation[J]. J Energy Inst,2019,92(5):1348−1363. doi: 10.1016/j.joei.2018.09.006
    [33]
    SCHULTZ E L, MULLEN C A, BOATENG A A. Aromatic hydrocarbon production from eucalyptus urophylla pyrolysis over several metal-modified ZSM-5 catalysts[J]. Energy Technol,2017,5(1):196−204. doi: 10.1002/ente.201600206
    [34]
    WU L, XIN J J, XIA D, SUN J L, LIANG J. Enhanced production of hydrocarbons from the catalytic pyrolysis of maize straw over hierarchical ZSM-11 zeolites[J]. Appl Catal B: Environ,2022,317:121775. doi: 10.1016/j.apcatb.2022.121775
    [35]
    REN X Y, CAO J P, ZHAO X Y, YANG Z, LIU T L, FAN X, ZHAO Y P, WEI X Y. Catalytic upgrading of pyrolysis vapors from lignite over mono/bimetal-loaded mesoporous HZSM-5[J]. Fuel,2018,218:33−40. doi: 10.1016/j.fuel.2018.01.017
    [36]
    YANG H P, YAN R, CHEN H P, LEE D H, ZHENG C G. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel,2007,86(12/13):1781−1788. doi: 10.1016/j.fuel.2006.12.013
    [37]
    SHAFAGHAT H, JAE J, JUNG S C, JEON J K, KO C H, PARK Y K. Effect of methane co-feeding on product selectivity of catalytic pyrolysis of biomass[J]. Catal Today,2018,303:200−206. doi: 10.1016/j.cattod.2017.09.009
    [38]
    CHEN X, GUAN W X, TSANG C W, HU H Q, LIANG C H. Lignin valorizations with Ni catalysts for renewable chemicals and fuels productions[J]. Catalysts,2019,9(6):488. doi: 10.3390/catal9060488
    [39]
    LI X H, GE S N, SHAO S S, LV Z C, XIANG X L, CAI Y X. Promoted production of hydrocarbons in the catalytic pyrolysis of rape straw over composite HZSM-5@ MCM-41 catalysts[J]. J Anal Appl Pyrolysis,2021,157:105067. doi: 10.1016/j.jaap.2021.105067
    [40]
    SANAPUR G, KUMAR A, MONDAL A, SREERAMAGIRI S, DONGARA R, RAMASWAMY G. Thermal desorption and characterization of carbonaceous deposits in Mo/HZSM-5 catalyst[J]. J Anal Appl Pyrolysis,2019,138:22−28. doi: 10.1016/j.jaap.2018.11.031
    [41]
    ZHANG B, ZHANG J, ZHONG Z P, ZHANG Y C, SONG M, WANG X J, DING K, RUAN R. Conversion of poultry litter into bio-oil by microwave-assisted catalytic fast pyrolysis using microwave absorbent and hierarchical ZSM-5/MCM-41 catalyst[J]. J Anal Appl Pyrolysis,2018,130:233−240. doi: 10.1016/j.jaap.2018.01.002
    [42]
    CARLSON T R, CHENG Y T, JAE J, HUBER J W. Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust[J]. Energ Environ Sci,2011,4(1):145−161. doi: 10.1039/C0EE00341G
    [43]
    OUYANG D H, CHEN H M, LIU N, ZHANG J Z, ZHAO X B. Insight into the negative effects of lignin on enzymatic hydrolysis of cellulose for biofuel production via selective oxidative delignification and inhibitive actions of phenolic model compounds[J]. Renewable Energy,2022,185:196−207. doi: 10.1016/j.renene.2021.12.036
    [44]
    SINGH N, SINGHANIA R R, NIGAM P S, DONG C D, PATEL A K, PURI M. Global status of lignocellulosic biorefinery: Challenges and perspectives[J]. Bioresour Technol,2022,344:126415. doi: 10.1016/j.biortech.2021.126415
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1407) PDF downloads(118) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return