Volume 51 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
LI Bo-xiang, WANG Jun-gang, WANG Qiang, ZHANG Wei, LIU Yan, MA Zhan-cheng, MA Zhong-yi, HOU Bo. Study on the effect of different metal oxides on the performance of cobalt-based Fischer-Tropsch catalysts[J]. Journal of Fuel Chemistry and Technology, 2023, 51(10): 1411-1420. doi: 10.19906/j.cnki.JFCT.2023018
Citation: LI Bo-xiang, WANG Jun-gang, WANG Qiang, ZHANG Wei, LIU Yan, MA Zhan-cheng, MA Zhong-yi, HOU Bo. Study on the effect of different metal oxides on the performance of cobalt-based Fischer-Tropsch catalysts[J]. Journal of Fuel Chemistry and Technology, 2023, 51(10): 1411-1420. doi: 10.19906/j.cnki.JFCT.2023018

Study on the effect of different metal oxides on the performance of cobalt-based Fischer-Tropsch catalysts

doi: 10.19906/j.cnki.JFCT.2023018
Funds:  The project was supported by the Basic Research Program of Shanxi Province (202103021224444), Central Guidance for Local Science and Technology Development Funds (YDZJSX2021C041) and National Natural Science Foundation of China (22179136,22279155,22279156)
  • Received Date: 2023-01-14
  • Accepted Date: 2023-03-03
  • Rev Recd Date: 2023-02-28
  • Available Online: 2023-03-14
  • Publish Date: 2023-10-10
  • In this paper, three metal oxides, ZrO2, Al2O3 and MnO2, loaded with 1% content on hexagonal nanosheets of Co3O4 (NMS-Co), respectively, were prepared as reversed-phase catalyst models to investigate the effects of metal oxides on the performance of cobalt-based catalysts for Fischer-Tropsch synthesis. The results of H2-TPD, CO-TPD and catalyst performance evaluation revealed that ZrO2 and Al2O3 could significantly increase the active sites of NMS-Co catalysts, lower the reaction temperature from 230 ℃ to 170 and 180 ℃, respectively, and increase the heavy hydrocarbon generation rate by 2.5 and 2 times, respectively, under the same conversion conditions. The CH4 selectivity was reduced from 37.8% to 3.6% and 12.0%, respectively. However, MnO2 increased the CO conversion only from 30.9% to 45.5% and decreased the CH4 selectivity to 16.5%. A new idea is proposed to investigate the effect of metal oxides on the performance of cobalt-based Fischer-Tropsch catalysts.
  • loading
  • [1]
    ZHONG M, YANG P, HOU B, XIA M, WANG J. Tuning the catalytic performance of Fischer-Tropsch synthesis by regulating the Al2O3-layer over Co/Al2O3/Al catalysts[J]. Fuel,2022,314:122136. doi: 10.1016/j.fuel.2021.122136
    [2]
    KOO H M, AHN C-I, LEE D H, ROH H S, SHIN C H, KYE H, BAE J W. Roles of Al2O3 promoter for an enhanced structural stability of ordered-mesoporous Co3O4 catalyst during CO hydrogenation to hydrocarbons[J]. Fuel,2018,225:460−471. doi: 10.1016/j.fuel.2018.03.175
    [3]
    POUR A N, SHAHRI S M K, BOZORGZADEH H R, ZAMANI Y, TAVASOLI A, MARVAST M A. Effect of Mg, La and Ca promoters on the structure and catalytic behavior of iron-based catalysts in Fischer-Tropsch synthesis[J]. Appl Catal A: Gen,2008,348(2):201−208. doi: 10.1016/j.apcata.2008.06.045
    [4]
    HE L, TENG B, ZHANG Y, FAN M. Development of composited rare-earth promoted cobalt-based Fischer-Tropsch synthesis catalysts with high activity and selectivity[J]. Appl Catal A: Gen,2015,505:276−283. doi: 10.1016/j.apcata.2015.07.041
    [5]
    LI Y, QIN X, WANG T, MA L, CHEN L, TSUBAKI N. Fischer Tropsch synthesis from H2-deficient biosyngas over Mn added Co/SiO2 catalysts[J]. Fuel,2014,136:130−135. doi: 10.1016/j.fuel.2014.06.048
    [6]
    PIAO Y, JIANG Q, LI H, MATSUMOTO H, LIANG J, LIU W, PHAM-HUU C, LIU Y, WANG F. Identify Zr promotion effects in atomic scale for Co-based catalysts in Fischer-Tropsch synthesis[J]. ACS Catal,2020,10(14):7894−7906. doi: 10.1021/acscatal.0c01874
    [7]
    ALAYAT A, ECHEVERRIA E, SOTOUDEHNIAKARANI F, MCLIROY D N, MCDONALD A G. Alumina coated silica nanosprings (NS) support based cobalt catalysts for liquid hydrocarbon fuel production from syngas[J/OL]. Materials, 2019: 12(11).
    [8]
    FELLER A, CLAEYS M, STEEN E V. Cobalt cluster effects in zirconium promoted Co/SiO2 Fischer-Tropsch catalysts[J]. J Catal,1999,185(1):120−130. doi: 10.1006/jcat.1999.2497
    [9]
    JOHNSON G R, BELL A T. Role of ZrO2 in promoting the activity and selectivity of Co-based Fischer-Tropsch synthesis catalysts[J]. ACS Catal,2016,6(1):100−114. doi: 10.1021/acscatal.5b02205
    [10]
    ZHAO Z, LU W, ZHU H, DONG W, LYU Y, LIU T, CHEN X, WANG Y, DING Y. Tuning the Fischer-Tropsch reaction over CoxMnyLa/AC catalysts toward alcohols: Effects of La promotion[J]. J catal,2018,361:156−167. doi: 10.1016/j.jcat.2018.02.008
    [11]
    JIANG F, WANG S, ZHENG J, LIU B, XU Y, LIU X. Fischer-Tropsch synthesis to lower α-olefins over cobalt-based catalysts: Dependence of the promotional effect of promoter on supports[J]. Catal Today,2021,369:158−166. doi: 10.1016/j.cattod.2020.03.051
    [12]
    JOHNSON G R, WERNER S, BELL A T. An investigation into the effects of Mn promotion on the activity and selectivity of Co/SiO2 for Fischer-Tropsch synthesis: Evidence for enhanced CO adsorption and dissociation[J]. ACS Catal,2015,5(10):5888−5903. doi: 10.1021/acscatal.5b01578
    [13]
    PEDERSEN E Ø, SVENUM I-H, BLEKKAN E A. Mn promoted Co catalysts for Fischer-Tropsch production of light olefins – An experimental and theoretical study[J]. J Catal,2018,361:23−32. doi: 10.1016/j.jcat.2018.02.011
    [14]
    QIN Ch, HOU B, WANG J, WANG Q, YU M, CHEN C, JIA L, LI D. Crystal-plane-dependent Fischer-Tropsch performance of cobalt catalysts[J]. ACS Catal,2018,8(10):9447−9455. doi: 10.1021/acscatal.8b01333
    [15]
    ZHANG Z, WANG F, JIANG J, ZHU H, DU Y, FENG J, LI H, JIANG X. LDH derived Co-Al nanosheet for lipid hydrotreatment to produce green diesel[J]. Fuel,2023,333:126341. doi: 10.1016/j.fuel.2022.126341
    [16]
    PETERSEN A P, CLAEYS M, KOOYMAN P J, STEEN E V. Cobalt-based Fischer-tropsch synthesis: A kinetic evaluation of metal-support interactions using an inverse model system[J]. Catalysts, 2019, 9(10): 794.
    [17]
    PETERSEN A P, FORBES R P, GOVENDER S, KOOYMAN P J, STEEN E V. Effect of alumina modification on the reducibility of Co3O4 crystallites studied on inverse-model catalysts[J]. Catal Lett,2018,148(4):1215−1227. doi: 10.1007/s10562-018-2332-5
    [18]
    ARNOLDY P, MOULIJN J A. Temperature-programmed reduction of CoOAl2O3 catalysts[J]. J Catal,1985,93(1):38−54. doi: 10.1016/0021-9517(85)90149-6
    [19]
    NAVARRO V, VAN SPRONSEN M A, FRENKEN J W M. In situ observation of self-assembled hydrocarbon Fischer-Tropsch products on a cobalt catalyst[J]. Nat Chem,2016,8(10):929−934. doi: 10.1038/nchem.2613
    [20]
    LI W, NIE X, YANG H, FELIPE P G, WU Z, ZHU J, WANG J, LIU Y, SHI C, SONG C, GUO X. Crystallographic dependence of CO2 hydrogenation pathways over HCP-Co and FCC-Co catalysts[J]. Appl Catal B: Environ,2022,315:121529. doi: 10.1016/j.apcatb.2022.121529
    [21]
    XING X, CHEN S, WANG C, LYN R, ZHANG D, ZHANG Y, LIU C, LI J, HONG J. Co3O4 nanowire arrays grown on carbon nanotube-based films for Fischer-Tropsch synthesis[J]. ACS Appl Nano Mater,2021,4(8):7811−7819. doi: 10.1021/acsanm.1c01122
    [22]
    JEAN-MARIE A, GRIBOVAL-CONSTANT A, KHODAKOV A Y, MONFLIER E, DIEHL F. β-Cyclodextrin for design of alumina supported cobalt catalysts efficient in Fischer-Tropsch synthesis[J]. Chem Commun,2011,47(38):10767−10769. doi: 10.1039/c1cc13800f
    [23]
    XIAO T, LIU X, XU G, ZHANG Y. Phase tuning of ZrO2 supported cobalt catalysts for hydrodeoxygenation of 5-hydroxymethylfurfural to 2, 5-dimethylfuran under mild conditions[J]. Appl Catal B: Environ,2021,295:120270. doi: 10.1016/j.apcatb.2021.120270
    [24]
    LIU G, SUN H, WANG H, QU Z. Rational tuning towards B-sites (B = Mn, Co, Al) on CoB2O4 binary oxide for efficient selective catalytic oxidation of ammonia[J]. Chem Eng J,2023,453:139941. doi: 10.1016/j.cej.2022.139941
    [25]
    CAI F, SONG X, WU Y, ZHANG J, XIAO G. Selective hydrogenolysis of glycerol over acid-modified Co-Al catalysts in a fixed-bed flow reactor[J]. ACS Sustainable Chem Eng,2018,6(1):110−118. doi: 10.1021/acssuschemeng.7b01233
    [26]
    ZHANG Q, GUO H, HOU B, WANG J, LI D, JIA L. Effects of Mn and Zr promoters on the performance of ordered mesoporous carbon supported Co catalyst in Fischer-Tropsch synthesis[J]. J Fuel Chem Technol,2017,45(6):682−688.
    [27]
    PRINS R. Hydrogen spillover. Facts and fiction[J]. Chem Rev,2012,112(5):2714−2738. doi: 10.1021/cr200346z
    [28]
    ENACHE D I, ROY-AUBERGER M, REVEL R. Differences in the characteristics and catalytic properties of cobalt-based Fischer-Tropsch catalysts supported on zirconia and alumina[J]. Appl Catal A: Gen,2004,268(1):51−60.
    [29]
    YANG S, LI M, NAWAZ M A, SONG G, XIAO W, WANG Z, LIU D. High selectivity to aromatics by a Mg and Na Co-modified catalyst in direct conversion of syngas[J]. ACS Omega,2020,5(20):11701−11709. doi: 10.1021/acsomega.0c01007
    [30]
    FOPPA L, COPÉRET C, COMAS-VIVES A. Increased back-bonding explains step-edge reactivity and particle size effect for CO activation on Ru nanoparticles[J]. J Am Chem Soc,2016,138(51):16655−16668. doi: 10.1021/jacs.6b08697
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1211) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return