Volume 51 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
WANG Peng-cheng, ZHAO Xue, YU Jie. The reaction pathway of methane and catalyst stability under supercritical water[J]. Journal of Fuel Chemistry and Technology, 2023, 51(8): 1035-1046. doi: 10.19906/j.cnki.JFCT.2023019
Citation: WANG Peng-cheng, ZHAO Xue, YU Jie. The reaction pathway of methane and catalyst stability under supercritical water[J]. Journal of Fuel Chemistry and Technology, 2023, 51(8): 1035-1046. doi: 10.19906/j.cnki.JFCT.2023019

The reaction pathway of methane and catalyst stability under supercritical water

doi: 10.19906/j.cnki.JFCT.2023019
Funds:  The project was supported by the National Natural Science Foundation of China (52176186) and National Innovation and Entrepreneurship Training Program for University Students (202210487123)
  • Received Date: 2022-12-26
  • Accepted Date: 2023-02-27
  • Rev Recd Date: 2023-02-23
  • Available Online: 2023-03-14
  • Publish Date: 2023-08-01
  • In supercritical water (SCW) condition, the gasification of biomass to H2 or CH4 has been studied extensively and proves to be critical in realising the upgrading of carbonaceous fuels. Given the extreme conditions of water at high pressure and temperature, along with the complex structure of biomass, the development of such a process still remains a challenge. In order to realize the complete decomposition of biomass and a high yield of desired products, such as CH4 and H2 at relatively milder conditions, various catalysts were synthesized and practiced. Different metals (such as Cr, Ni, Zn, Ru and Rh) were incorporated into various supports, such as mineral compounds of Al2O3, SiO2, TiO2, ZrO2, MgO, Y2O3, CeO2, silica-alumina, zeolites and carbon based supports of carbon nanotube, activated carbon. As a result, the long term stability of catalys is critical in the gasification of carbonaceous fuel in supercritical water condition. Therefore, this work focused on the stability of various support materials and deactivation of active metal components in supercritical water conditions with the purpose of choosing robust catalysts. In supercritical water condition, the effect of catalyst on carbonaceous fuels cracking, methanation reaction and water gas shift reaction determines the gasification efficienty as a whole. Unfortunately, the mechanism of methanation reaction is still unclear. Therefore, the CH4 formation mechanism and the effect of catalyst on CH4 conversion are emphasized in this work.
  • loading
  • [1]
    ABU EL-RUB Z, BRAMER E A, BREM G. Review of catalysts for tar elimination in biomass gasification processes[J]. Ind Eng Chem Res,2004,43(22):6911−6919. doi: 10.1021/ie0498403
    [2]
    LANE M K M, ZIMMERMAN J B. Controlling metal oxide nanoparticle size and shape with supercritical fluid synthesis[J]. Green Chem,2019,21(14):3769−3781. doi: 10.1039/C9GC01619H
    [3]
    田宜灵, 冯季军, 秦颖, 陈丽, 房金刚. 超临界水的性质及其在化学反应中的应用[J]. 化学通报,2002,(6):396−402. doi: 10.14159/j.cnki.0441-3776.2002.06.006

    TIAN Yi-ling, FENG Ji-jun, QIN Ying, CHEN Li, FANG Jin-gang. The properties of supercritical water and its application in chemical reaction[J]. Chem Bull,2002,(6):396−402. doi: 10.14159/j.cnki.0441-3776.2002.06.006
    [4]
    GUO Y, WANG S Z, XU D H, GONG Y M, MA H H, TANG X Y. Review of catalytic supercritical water gasification for hydrogen production from biomass[J]. Renewable Sustainable Energy Rev,2010,14(1):334−43. doi: 10.1016/j.rser.2009.08.012
    [5]
    孙冰洁, 杜新, 张荣, 毕继诚. KOH对超临界水中褐煤连续制氢的影响[J]. 燃料化学学报,2010,38(5):518−521. doi: 10.3969/j.issn.0253-2409.2010.05.002

    SUN Bing-jie, DU Xin, ZHANG Rong, BI Ji-cheng. Effect of KOH on hydrogen production from lignite in a continuous supercritical water reactor[J]. J Fuel Chem Technol,2010,38(5):518−521. doi: 10.3969/j.issn.0253-2409.2010.05.002
    [6]
    XIONG H, PHAM H N, DATYE A K. Hydrothermally stable heterogeneous catalysts for conversion of biorenewables[J]. Green Chem,2014,16(11):4627−4643. doi: 10.1039/C4GC01152J
    [7]
    AZADI P, AFIF E, AZADI F, FARNOOD R. Screening of nickel catalysts for selective hydrogen production using supercritical water gasification of glucose[J]. Green Chem,2012,14(6):1766−1777. doi: 10.1039/c2gc16378k
    [8]
    FURUSAWA T, SATO T, SAITO M, ISHIYAMA Y, SATO M, ITOH N, SUZUKI N. The evaluation of the stability of Ni/MgO catalysts for the gasification of lignin in supercritical water[J]. Appl Catal A: Gen,2007,327(2):300−310. doi: 10.1016/j.apcata.2007.05.036
    [9]
    喻江东, 陈秋玲, 孙胜, 关清卿, 宁平, 谷俊杰. 生物质超临界水气化制氢过渡金属催化剂研究进展[J]. 高分子通报,2015,(189):19−24. doi: 10.14028/j.cnki.1003-3726.2015.01.004

    (YU Jiang-dong, CHEN Qiu-ling, SUN Sheng, GUAN Qing-qing, NING Ping, GU Jun-jie. Advance in the transition metals catalysts for hydrogen production by biomass gasification in supercritical water[J]. Polym Bull,2015,(189):19−24. doi: 10.14028/j.cnki.1003-3726.2015.01.004
    [10]
    ZHANG Y, LI Y, GU J, TIAN S, NING P. Hydrothermal stability of different zeolites in supercritical water: Implication for synthesis of supported catalysts by supercritical water impregnation[J]. Korean J Chem Eng,2018,35(9):1932−1940. doi: 10.1007/s11814-018-0084-y
    [11]
    OSADA M, SATO O, ARAI K, SHIRAI M. Stability of supported ruthenium catalysts for lignin gasification in supercritical water[J]. Energy Fuels,2006,20(6):2337−2343. doi: 10.1021/ef060356h
    [12]
    ZÖHRER H, MAYR F, VOGEL F. Stability and performance of ruthenium catalysts based on refractory oxide supports in supercritical water conditions[J]. Energy Fuels,2013,27(8):4739−4747. doi: 10.1021/ef400707f
    [13]
    RAVENELLE R M, COPELAND J R, KIM W-G, CRITTENDEN J C, SIEVERS C. Structural changes of γ-Al2O3-supported catalysts in hot liquid water[J]. ACS Catal,2011,1(5):552−561. doi: 10.1021/cs1001515
    [14]
    ELLIOTT D C, SEALOCK L J, BAKER E G. Chemical processing in high-pressure aqueous environments. 2. Development of catalysts for gasification[J]. Ind Eng Chem Res,1993,32(8):1542−1548. doi: 10.1021/ie00020a002
    [15]
    DE VLIEGER D J M, THAKUR D B, LEFFERTS L, SESHAN K. Carbon nanotubes: A promising catalyst support material for supercritical water gasification of biomass waste[J]. ChemCatChem,2012,4(12):2068−2074. doi: 10.1002/cctc.201200318
    [16]
    ZHANG L, CHAMPAGNE P, XU C. Screening of supported transition metal catalysts for hydrogen production from glucose via catalytic supercritical water gasification[J]. Int J Hydrog Energy,2011,36(16):9591−9601. doi: 10.1016/j.ijhydene.2011.05.077
    [17]
    LU Y, ZHU Y, LI S, ZHANG X, GUO L. Behavior of nickel catalysts in supercritical water gasification of glucose: Influence of support[J]. Biomass Bioenergy,2014,67:125−136. doi: 10.1016/j.biombioe.2014.04.038
    [18]
    郭烈锦, 王乐, 黄勇, 杜明明, 葛晖, 刘兆峥, 陈渝楠. 农林业固废超临界水热化学制氢进展——反应机理[J]. 西安交通大学学报, 2023, 57(1): 1–14.

    GUO Lie-jin, WANG Le, HUANG Yong, DU Ming-ming, GE Hui, LIU Zhao-zheng, CHEN Yu-nan. Review of thermochemical conversion of agriculture and forestry waste for hydrogen production in supercritical water-mechanism analysis[J]. J Xi'an Jiaotong Univ, 2023, 57(1): 1–14.
    [19]
    YAKABOYLU O, HARINCK J, GERTON SMIT K G, DE JONG W. Supercritical water gasification of manure: A thermodynamic equilibrium modeling approach[J]. Biomass Bioenergy,2013,59:253−263. doi: 10.1016/j.biombioe.2013.07.011
    [20]
    RAHBARI A, VENKATARAMAN M B, PYE J. Energy and exergy analysis of concentrated solar supercritical water gasification of algal biomass[J]. Appl Energy,2018,228:1669−1682. doi: 10.1016/j.apenergy.2018.07.002
    [21]
    WAN W. An innovative system by integrating the gasification unit with the supercritical water unit to produce clean syngas: Effects of operating parameters[J]. Int J Hydrog Energy,2016,41(33):14573−14582. doi: 10.1016/j.ijhydene.2016.04.237
    [22]
    闫秋会, 郭烈锦, 张西民, 吕友军, 梁兴. 超临界水中葡萄糖气化制氢的热力学分析[J]. 化工学报,2004,(11):1916−1920. doi: 10.3321/j.issn:0438-1157.2004.11.030

    YAN Qiu-hui, GUO Lie-jin, ZHANG Xi-min, LU You-jun, LIANG Xing. Thermodynamics analysis of hydrogen production by glucose gasification in supercritical water[J]. J Chem Ind Eng,2004,(11):1916−1920. doi: 10.3321/j.issn:0438-1157.2004.11.030
    [23]
    吴君章, 晏波, 何凤媚, 谢成, 吴超飞, 韦朝海. 近-超临界水中Ni/ZrO2催化气化聚乙二醇水溶液的产氢特性[J]. 化工学报,2008,(3):743−750.

    WU Jun-zhang, YAN Bo, HE Feng-mei, XIE Cheng, WU Chao-fei, WEI Chao-hai. Characteristics of hydrogen production from polyethylene glycol wastewater by sub-supercritical water gasification with Ni/ZrO2 catalysts[J]. J Chem Ind Eng,2008,(3):743−750.
    [24]
    NIKOO M K, SAEIDI S, LOHI A. A comparative thermodynamic analysis and experimental studies on hydrogen synthesis by supercritical water gasification of glucose[J]. Clean Technol Environ Policy,2015,17(8):2267−2288. doi: 10.1007/s10098-015-0965-2
    [25]
    RESENDE F L P, SAVAGE P E. Effect of metals on supercritical water gasification of cellulose and lignin[J]. Ind Eng Chem Res,2010,49(6):2694−2700. doi: 10.1021/ie901928f
    [26]
    BJELIĆ S, GASSER U, ALXNEIT I, VOGEL F. Deactivation of methanation catalyst (Ru/C) under supercritical water by deposition of non-volatile organics: First insights into deposition patterns and chemical properties[J]. ChemCatChem,2019,11(6):1747−1755. doi: 10.1002/cctc.201801615
    [27]
    SHABAKER J W, HUBER G W, DUMESIC J A. Aqueous-phase reforming of oxygenated hydrocarbons over Sn-modified Ni catalysts[J]. J Catal,2004,222(1):180−191. doi: 10.1016/j.jcat.2003.10.022
    [28]
    HUBER G W, SHABAKER J W, DUMESIC J A. Raney Ni-Sn catalyst for H2 production from biomass-derived hydrocarbons[J]. Science,2003,300(5628):2075−2077. doi: 10.1126/science.1085597
    [29]
    GUAN Q Q, MAO T X, ZHANG Q L, MIAO R R, NING P, GU J J, TIAN S L, CHEN Q L, CHAI X S. Catalytic gasification of lignin with Ni/Al2O3-SiO2 in sub/supercritical water[J]. J Supercrit Fluid,2014,95:413−421. doi: 10.1016/j.supflu.2014.10.015
    [30]
    OSADA M, SATO T, WATANABE M, ADSCHIRI T, ARAI K. Low-temperature catalytic gasification of lignin and cellulose with a ruthenium catalyst in supercritical water[J]. Energy Fuels,2004,18(2):327−333. doi: 10.1021/ef034026y
    [31]
    KIPCAK E, AKGUN M. Biofuel production from olive mill wastewater through its Ni/Al2O3 and Ru/Al2O3 catalyzed supercritical water gasification[J]. Renewable Energy,2018,124:155−164. doi: 10.1016/j.renene.2017.06.075
    [32]
    ORTIZ F J G, CAMPANARIO F J, AGUILERA P G, OLLERO P. Supercritical water reforming of glycerol: Performance of Ru and Ni catalysts on Al2O3 support[J]. Energy,2016,96:561−568. doi: 10.1016/j.energy.2015.12.090
    [33]
    OSADA M, YAMAGUCHI A, HIYOSHI N, SATO O, SHIRAI M. Gasification of sugarcane bagasse over supported ruthenium catalysts in supercritical water[J]. Energy Fuels,2012,26(6):3179−3186. doi: 10.1021/ef300460c
    [34]
    AZADI P, KHAN S, STROBEL F, AZADI F, FARNOOD R. Hydrogen production from cellulose, lignin, bark and model carbohydrates in supercritical water using nickel and ruthenium catalysts[J]. Appl Catal B: Environ,2012,117:330−338.
    [35]
    SATO T, OSADA M, WATANABE M, SHIRAI M, ARAI K. Gasification of alkylphenols with supported noble metal catalysts in supercritical water[J]. Ind Eng Chem Res,2003,42(19):4277−4282. doi: 10.1021/ie030261s
    [36]
    OSADA M, SATO O, WATANABE M, ARAI K, SHIRAI M. Water Density Effect on Lignin Gasification over Supported Noble Metal Catalysts in Supercritical Water[J]. Energy Fuels,2006,20(3):930−935. doi: 10.1021/ef050398q
    [37]
    王洪明, 庙荣荣, 杨勇, 乔玉辉, 张琼芳, 李春生, 黄江平. 碱木质素在超临界水中Ru/C纳米管催化气化的降解研究[J]. 燃料化学学报,2015,43(10):1195−1201. doi: 10.3969/j.issn.0253-2409.2015.10.007

    WANG Hong-ming, MIAO Rong-rong, YANG Yong, QIAO Yu-hui, ZHANG Qiong-fang, LI Chun-sheng, HUANG Jiang-ping. Study on the catalytic gasification of alkali lignin over Ru/C nanotubes in supercritical water[J]. J Fuel Chem Technol,2015,43(10):1195−1201. doi: 10.3969/j.issn.0253-2409.2015.10.007
    [38]
    BYRD A J, PANT K K, GUPTA R B. Hydrogen production from ethanol by reforming in Supercritical water using Ru/Al2O3 catalyst[J]. Energ Fuel,2007,21(6):3541−3547. doi: 10.1021/ef700269z
    [39]
    BYRD A J, PANT K K, GUPTA R B. Hydrogen production from glycerol by reforming in supercritical water over Ru/Al2O3 catalyst[J]. Fuel,2008,87(13/14):2956−2960.
    [40]
    VOGEL F, WALDNER M H, ROUFF A A, RABE S. Synthetic natural gas from biomass by catalytic conversion in supercritical water[J]. Green Chem,2007,9(6):616−619. doi: 10.1039/b614601e
    [41]
    ONWUDILI J A, WILLIAMS P T. Catalytic conversion of bio-oil in supercritical water: Influence of RuO2/gamma-Al2O3 catalysts on gasification efficiencies and bio-methane production[J]. Appl Catal B: Environ,2016,180:559−568. doi: 10.1016/j.apcatb.2015.06.058
    [42]
    KERSTEN S R A, POTIC B, PRINS W, VAN SWAAIJ W P M. Gasification of model compounds and wood in hot compressed water[J]. Ind Eng Chem Res,2006,45(12):4169−4177. doi: 10.1021/ie0509490
    [43]
    姜炜, 程乐明, 张荣, 毕继诚. 连续式超临界水反应器中褐煤制氢过程影响因素的研究[J]. 燃料化学学报,2008,36(6):660−665. doi: 10.3969/j.issn.0253-2409.2008.06.004

    JIANG Wei, CHENG Le-ming, ZHANG Rong, BI Ji-cheng. Continuous hydrogen generation from lignite in supercritical water[J]. J Fuel Chem Technol,2008,36(6):660−665. doi: 10.3969/j.issn.0253-2409.2008.06.004
    [44]
    吕友军, 张西民, 冀承猛, 郭烈锦. 玉米芯在超临界水中气化制氢实验研究[J]. 太阳能学报,2006,(4):335−339. doi: 10.3321/j.issn:0254-0096.2006.04.004

    LÜ You-jun, ZHANG Xi-min, JI Cheng-meng, GUO Lie-jin. Experimental investigation on hydrogen production by corn cob gasification in supercritical water[J]. Acta Energ Sol Sin,2006,(4):335−339. doi: 10.3321/j.issn:0254-0096.2006.04.004
    [45]
    PARK K C, TOMIYASU H. Gasification reaction of organic compounds catalyzed by RuO2 in supercritical water[J]. Chem Commun,2003,(6):694−695. doi: 10.1039/b211800a
    [46]
    ONWUDILI J A. Supercritical water gasification of RDF and its components over RuO2/γ-Al2O3 catalyst: New insights into RuO2 catalytic reaction mechanisms[J]. Fuel,2016,181:157−169. doi: 10.1016/j.fuel.2016.04.102
    [47]
    RABE S, NACHTEGAAL M, ULRICH T, VOGEL F. Towards understanding the catalytic reforming of biomass in supercritical water[J]. Angew Chem Int Ed,2010,49(36):6434−6437. doi: 10.1002/anie.201001160
    [48]
    PETERSON A A, DREHER M, WAMBACH J, NACHTEGAAL M, DAHL S, NØRSKOV J K, VOGEL F. Evidence of scrambling over ruthenium-based catalysts in supercritical-water gasification[J]. ChemCatChem,2012,4(8):1185−1189. doi: 10.1002/cctc.201100450
    [49]
    DREHER M, JOHNSON B, PETERSON A A, NACHTEGAAL M, WAMBACH J, VOGEL F. Catalysis in supercritical water: Pathway of the methanation reaction and sulfur poisoning over a Ru/C catalyst during the reforming of biomolecules[J]. J Catal,2013,301:38−45. doi: 10.1016/j.jcat.2013.01.018
    [50]
    刘理力, 廖传华, 陈海军, 朱跃钊. 松木屑超临界水气化制甲烷产气性能试验[J]. 林业工程学报,2016,1(4):96−101.

    (LIU Li-li, LIAO Chuan-hua, CHEN Hai-jun, ZHU Yue-zhao. Experimental study on the methane production by gasification of pine sawdust in supercritical water[J]. J Forestry Eng,2016,1(4):96−101.
    [51]
    KIPÇAK E, SÖĞÜT O Ö, AKGÜN M. Hydrothermal gasification of olive mill wastewater as a biomass source in supercritical water[J]. J Supercrit Fluid,2011,57(1):50−57. doi: 10.1016/j.supflu.2011.02.006
    [52]
    KRUSE A, DINJUS E. Hydrogen from methane and supercritical water[J]. Angew Chem Int Ed,2003,42(8):909−911. doi: 10.1002/anie.200390240
    [53]
    王东辉, 程代云, 史喜成, 郝郑平. 环境友好的超临界多相催化反应研究进展[J]. 现代化工,2001,(11):16−20. doi: 10.3321/j.issn:0253-4320.2001.11.004

    WANG Dong-hui, CHENG Dai-yun, SHI Xi-cheng, HAO Zheng-ping. Advances in environment-friendly heterogeneous catalytic reaction in supercritical fluids[J]. Mod Chem Ind,2001,(11):16−20. doi: 10.3321/j.issn:0253-4320.2001.11.004
    [54]
    OSADA M, HIYOSHI N, SATO O, ARAI K, SHIRAI M. Effect of sulfur on catalytic gasification of lignin in supercritical water[J]. Energy Fuels,2007,21(3):1400−1405. doi: 10.1021/ef060636x
    [55]
    WALDNER M H, KRUMEICH F, VOGEL F. Synthetic natural gas by hydrothermal gasification of biomass: Selection procedure towards a stable catalyst and its sodium sulfate tolerance[J]. J Supercrit Fluid,2007,43(1):91−105. doi: 10.1016/j.supflu.2007.04.004
    [56]
    OSADA M, HIYOSHI N, SATO O, ARAI K, SHIRAI M. Reaction pathway for catalytic gasification of lignin in presence of sulfur in supercritical water[J]. Energy Fuels,2007,21(4):1854−1858. doi: 10.1021/ef0701642
    [57]
    AZADI P, FARNOOD R. Review of heterogeneous catalysts for sub- and supercritical water gasification of biomass and wastes[J]. Int J Hydrog Energy,2011,36(16):9529−9541. doi: 10.1016/j.ijhydene.2011.05.081
    [58]
    WANG Y, ZHU Y, LIU Z, WANG L, XU D, FANG C, WANG S. Catalytic performances of Ni-based catalysts on supercritical water gasification of phenol solution and coal-gasification wastewater[J]. Int J Hydrog Energy,2019,44(7):3470−3480. doi: 10.1016/j.ijhydene.2018.08.218
    [59]
    LI S, SAVAGE P E, GUO L. Stability and activity maintenance of Al2O3- and carbon nanotube-supported Ni catalysts during continuous gasification of glycerol in supercritical water[J]. J Supercrit Fluid,2018,135:188−197. doi: 10.1016/j.supflu.2017.12.006
    [60]
    LI S, SAVAGE P E, GUO L. Stability and activity maintenance of sol-gel Ni-MxOy (M=Ti, Zr, Ta) catalysts during continuous gasification of glycerol in supercritical water[J]. J Supercrit Fluid,2019,148:137−147. doi: 10.1016/j.supflu.2019.02.028
    [61]
    BEHNIA I, YUAN Z, CHARPENTIER P, XU C. Production of methane and hydrogen via supercritical water gasification of renewable glucose at a relatively low temperature: Effects of metal catalysts and supports[J]. Fuel Process Technol,2016,143:27−34. doi: 10.1016/j.fuproc.2015.11.006
    [62]
    CHAKINALA A G, VAN SWAAIJ W P M, KERSTEN S R A, DE VLIEGER D, SESHAN K, BRILMAN D W F. Catalytic reforming of glycerol in supercritical water over bimetallic Pt-Ni catalyst[J]. Ind Eng Chem Res,2013,52(15):5302−5312.
    [63]
    SHABAKER J W, SIMONETTI D A, CORTRIGHT R D, DUMESIC J A. Sn-modified Ni catalysts for aqueous-phase reforming: Characterization and deactivation studies[J]. J Catal,2005,231(1):67−76. doi: 10.1016/j.jcat.2005.01.019
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1572) PDF downloads(87) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return