Volume 51 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
YU Shi-jie, ZHAO Peng, LIU Mao-qing, GAO Yu, LI Qing-hai, ZHANG Yan-guo, ZHOU Hui. Effects of decoupled temperature and pressure on the hydrothermal process of lignin[J]. Journal of Fuel Chemistry and Technology, 2023, 51(8): 1106-1113. doi: 10.19906/j.cnki.JFCT.2023029
Citation: YU Shi-jie, ZHAO Peng, LIU Mao-qing, GAO Yu, LI Qing-hai, ZHANG Yan-guo, ZHOU Hui. Effects of decoupled temperature and pressure on the hydrothermal process of lignin[J]. Journal of Fuel Chemistry and Technology, 2023, 51(8): 1106-1113. doi: 10.19906/j.cnki.JFCT.2023029

Effects of decoupled temperature and pressure on the hydrothermal process of lignin

doi: 10.19906/j.cnki.JFCT.2023029
Funds:  The project was support by the Beijing Municipal Natural Science Foundation (2222012), the Key-Area Research and Development Program of Guangdong Province (2020B1111380001), the National Natural Science Foundation of China (52070116), and the Tsinghua University-Shanxi Clean Energy Research Institute Innovation Project Seed Fund.
  • Received Date: 2023-01-10
  • Accepted Date: 2023-03-02
  • Rev Recd Date: 2023-03-01
  • Available Online: 2023-04-18
  • Publish Date: 2023-08-01
  • This study investigated the effects of decoupled temperature and pressure on lignin during the hydrothermal process. The effect of hydrothermal treatment on the lignin structure was evaluated, and the effects of decoupling temperature and pressure on the liquid products of the lignin were assessed under decoupling conditions. The results showed that lignin was composed almost entirely of the G-type monomer of coniferyl alcohol. After hydrothermal treatment, C–O bonds such as β–O–4 ester bonds in lignin were broken. Methoxy and aliphatic structures linked to oxygen-containing structures were converted into aliphatic carbon skeletons. The liquid phase products were initially vanillin and 3-(4-hydroxy-3-methoxyphenyl)-1-propanol, which were subsequently converted to guaiacol mainly by inter-monomer conversion and cleavage of the β–O–4 bond of the terminal guaiacyl unit of lignin. The decoupled high pressure inhibited the production of lignin liquid products and decreased the selectivity of isoeugenol in the products. The results of this paper are expected to provide more fundamental knowledge and understanding for the optimization of hydrothermal conversion process conditions of lignin.
  • loading
  • [1]
    刘宁, 史成香, 潘伦, 张香文, 邹吉军. 生物质替代石油原料合成高密度燃料的研究进展[J]. 燃料化学学报,2021,49(12):1780−1790.

    LIU Ning, SHI Cheng-xiang, PAN Lun, ZHANG Xiang-wen, ZOU Ji-jun. Progress on using biomass derivatives to replace petroleum for synthesis of high-density fuels[J]. J Fuel Chem Technol,2021,49(12):1780−1790.
    [2]
    HICKEL J, KALLIS G. Is green growth possible?[J]. New Polit Econ,2020,25(4):469−486. doi: 10.1080/13563467.2019.1598964
    [3]
    ZHANG D H, WANG J Q, LIN Y G, SI Y L, HUANG C, YANG J, HUANG B, LI W. Present situation and future prospect of renewable energy in China[J]. Renewable Sustainable Energ Rev,2017,76:865−871. doi: 10.1016/j.rser.2017.03.023
    [4]
    PRASAD S, KUMAR A, MURALIKRISHNA K S. Biofuels production: A sustainable solution to combat climate change[J]. Indian J Agric Sci,2014,84(12):1443−1452.
    [5]
    YU S, YANG X, LI Q, ZHANG Y, ZHOU H. Breaking the temperature limit of hydrothermal carbonization of lignocellulosic biomass by decoupling temperature and pressure[J]. Green Energy Environ,2023,8(4):1216−1227.
    [6]
    TURSI A. A review on biomass: importance, chemistry, classification, and conversion[J]. Biofuel Res J,2019,6(2):962−979. doi: 10.18331/BRJ2019.6.2.3
    [7]
    YU S, YANG X, ZHAO P, LI Q, ZHOU H, ZHANG Y. From biomass to hydrochar: Evolution on elemental composition, morphology, and chemical structure[J]. J Energy Inst,2022,101:194−200. doi: 10.1016/j.joei.2022.01.013
    [8]
    LIAO Y H, KOELEWIJN S F, VAN DEN BOSSCHE G, VAN AELST J, VAN DEN BOSCH S, RENDERS T, NAVARE K, NICOLAI T, VAN AELST K, MAESEN M, MATSUSHIMA H, THEVELEIN J M, VAN ACKER K, LAGRAIN B, VERBOEKEND D, SELS B F. A sustainable wood biorefinery for low-carbon footprint chemicals production[J]. Science,2020,367(6484):1385−1390. doi: 10.1126/science.aau1567
    [9]
    XU J Y, LI C Y, DAI L, XU C L, ZHONG Y D, YU F X, SI C L. Biomass fractionation and lignin fractionation towards lignin valorization[J]. ChemSusChem,2020,13(17):4284−4295. doi: 10.1002/cssc.202001491
    [10]
    YU S, WANG L, LI Q, ZHANG Y, ZHOU H. Sustainable carbon materials from the pyrolysis of lignocellulosic biomass[J]. Mater Today Sustainability,2022,19:100209. doi: 10.1016/j.mtsust.2022.100209
    [11]
    KOZLIAK E I, KUBATOVA A, ARTEMYEVA A A, NAGEL E, ZHANG C, RAJAPPAGOWDA R B, SRNIRNOVA A L. Thermal liquefaction of lignin to aromatics: Efficiency, selectivity, and product analysis[J]. ACS Sustainable Chem Eng,2016,4(10):5106−5122. doi: 10.1021/acssuschemeng.6b01046
    [12]
    UPTON B M, KASKO A M. Strategies for the conversion of lignin to high-value polymeric materials: Review and perspective[J]. Chem Rev,2016,116(4):2275−2306. doi: 10.1021/acs.chemrev.5b00345
    [13]
    ZHOU H, WANG H, SADOW A D, SLOWING, II. Toward hydrogen economy: Selective guaiacol hydrogenolysis under ambient hydrogen pressure[J]. Appl Catal B: Environ,2020,270:9.
    [14]
    ZHU W Z, WESTMAN G, THELIANDER H. Investigation and characterization of lignin precipitation in the LignoBoost process[J]. J Wood Chem Technol,2014,34(2):77−97. doi: 10.1080/02773813.2013.838267
    [15]
    BELKHEIRI T, ANDERSSON S I, MATTSSON C, OLAUSSON L, THELIANDER H, VAMLING L. Hydrothermal liquefaction of kraft lignin in subcritical water: Influence of phenol as capping agent[J]. Energy Fuels,2018,32(5):5923−5932. doi: 10.1021/acs.energyfuels.8b00068
    [16]
    LIU W J, JIANG H, YU H Q. Thermochemical conversion of lignin to functional materials: A review and future directions[J]. Green Chem,2015,17(11):4888−4907. doi: 10.1039/C5GC01054C
    [17]
    SUN R C. Lignin source and structural characterization[J]. ChemSusChem,2020,13(17):4385−4393. doi: 10.1002/cssc.202001324
    [18]
    BAJWA D S, POURHASHEM G, ULLAH A H, BAJWA S G. A concise review of current lignin production, applications, products and their environmental impact[J]. Ind Crop Prod,2019,139:111526.
    [19]
    SUN Z H, FRIDRICH B, DE SANTI A, ELANGOVAN S, BARTA K. Bright side of lignin depolymerization: Toward new platform chemicals[J]. Chem Rev,2018,118(2):614−678. doi: 10.1021/acs.chemrev.7b00588
    [20]
    赵勃, 吴凯, 仲惟鹏, 魏刚, 胡宗华, 郑文广, 阮慧锋, 严新明, 马颖, 王博, 江天霖, 张会岩. 木质素炭与ZSM-5联合催化热解木质素制备芳烃实验研究[J]. 燃料化学学报,2021,49(3):303−310.

    ZHAO Bo, WU Kai, ZHONG Li-peng, WEI Gang, HU Zong-hua, ZHENG Wen-guang, RUAN Hui-feng, YAN Xin-ming, MA Yin, WANG Bo, JIANG Tian-lin, ZHANG Hui-yan. Experimental study on catalytic pyrolysis of lignin under char and ZSM-5 for preparation of aromatics[J]. J Fuel Chem Technol,2021,49(3):303−310.
    [21]
    FAHMY T Y A, FAHMY Y, MOBARAK F, EL-SAKHAWY M, ABOU-ZEID R E. Biomass pyrolysis: Past, present, and future[J]. Environ Dev Sustain,2020,22(1):17−32. doi: 10.1007/s10668-018-0200-5
    [22]
    HA J M, HWANG K R, KIM Y M, JAE J, KIM K H, LEE H W, KIM J Y, PARK Y K. Recent progress in the thermal and catalytic conversion of lignin[J]. Renewable Sustainable Energy Rev,2019,111:422−441. doi: 10.1016/j.rser.2019.05.034
    [23]
    黄明, 朱亮, 马中青, 周秉亮, 刘晓欢, 叶结旺, 赵超. 金属改性分子筛催化热解木质素制取轻质芳烃[J]. 燃料化学学报,2021,49(3):292−302.

    HUANG Ming, ZHU Liang, MA Zhong-qing, ZHOU Bing-liang, LIU Xiao-huan, YE Jie-wang, ZHAO Chao. Production of light aromatics from the fast pyrolysis of lignin catalyzed by metal-modified H-ZSM-5 zeolites[J]. J Fuel Chem Technol,2021,49(3):292−302.
    [24]
    BELKHEIRI T, MATTSSON C, ANDERSSON S I, OLAUSSON L, AMAND L E, THELIANDER H, VAMLING L. Effect of pH on kraft lignin depolymerisation in subcritical water[J]. Energy Fuels,2016,30(6):4916−4924. doi: 10.1021/acs.energyfuels.6b00462
    [25]
    ZHOU H, WANG H, PERRAS F A, NAIK P, PRUSKI M, SADOW A D, SLOWING, II. Two-step conversion of Kraft lignin to nylon precursors under mild conditions[J]. Green Chem,2020,22(14):4676−4682. doi: 10.1039/D0GC01220C
    [26]
    娄静, 廖玮婷, 王智玉, 李璐, 李雁, 解新安. 钙钛矿催化木质素水热液化[J]. 燃料化学学报,2022,50(8):984−992. doi: 10.1016/S1872-5813(22)60004-5

    LOU Jing, LIAO Wei-ting, WANG Zhi-yu, LI Lu, LI Yan, XIE Xin-an. Hydrothermal liquefaction of lignin to aromatics over the perovskite catalysts[J]. J Fuel Chem Technol,2022,50(8):984−992. doi: 10.1016/S1872-5813(22)60004-5
    [27]
    OREGUI-BENGOECHEA M, GANDARIAS I, ARIAS P L, BARTH T. Unraveling the role of formic acid and the type of solvent in the catalytic conversion of lignin: A holistic approach[J]. ChemSusChem,2017,10(4):754−766. doi: 10.1002/cssc.201601410
    [28]
    YE K, LIU Y, WU S B, ZHUANG J P. A review for lignin valorization: Challenges and perspectives in catalytic hydrogenolysis [J]. Ind Crop Prod, 2021, 172.
    [29]
    KUMAR A, BISWAS B, BHASKAR T. Effect of cobalt on titania, ceria and zirconia oxide supported catalysts on the oxidative depolymerization of prot and alkali lignin[J]. Bioresour Technol,2020,299:122589.
    [30]
    KIM K H, FAROOQ A, SONG M Y, JUNG S C, JEON K J, SONG J, KO C H, JAE J, PARK Y K. Acetaldehyde removal and increased H-2/CO gas yield from biomass gasification over metal-loaded Kraft lignin char catalyst[J]. J Environ Manage,2019,232:330−335. doi: 10.1016/j.jenvman.2018.11.054
    [31]
    AKIYA N, SAVAGE P E. Roles of water for chemical reactions in high-temperature water[J]. Chem Rev,2002,102(8):2725−2750. doi: 10.1021/cr000668w
    [32]
    TOOR S S, ROSENDAHL L, RUDOLF A. Hydrothermal liquefaction of biomass: A review of subcritical water technologies[J]. Energy,2011,36(5):2328−2342. doi: 10.1016/j.energy.2011.03.013
    [33]
    LAPPALAINEN J, BAUDOUIN D, HORNUNG U, SCHULER J, MELIN K, BJELIC S, VOGEL F, KONTTINEN J, JORONEN T. Sub- and supercritical water liquefaction of kraft lignin and black liquor derived lignin[J]. Energies,2020,13(13):3309.
    [34]
    YU S, ZHAO P, YANG X, LI Q, MOHAMED B A, SAAD J M, ZHANG Y, ZHOU H. Low-temperature hydrothermal carbonization of pectin enabled by high pressure[J]. J Anal Appl Pyrolysis,2022,166:105627. doi: 10.1016/j.jaap.2022.105627
    [35]
    HEGER K, UEMATSU M, FRANCK E U. The static dielectric-constant of water at high-pressures and temperatures to 500 MPa and 550-degrees-C[J]. Berichte der Bunsengesellschaft für physikalische Chemie,1980,84(8):758−762. doi: 10.1002/bbpc.19800840814
    [36]
    YU S, ZHAO P, YANG X, LI Q, ZHANG Y, ZHOU H. Formation and evolution of pectin-derived hydrothermal carbon from pectin[J]. Fuel,2022,326:124997. doi: 10.1016/j.fuel.2022.124997
    [37]
    KRUSE A, DINJUS E. Hot compressed water as reaction medium and reactant - Properties and synthesis reactions[J]. J Supercrit Fluids,2007,39(3):362−380. doi: 10.1016/j.supflu.2006.03.016
    [38]
    ONWUDILI J A, WILLIAMS P T. Catalytic depolymerization of alkali lignin in subcritical water: Influence of formic acid and Pd/C catalyst on the yields of liquid monomeric aromatic products[J]. Green Chem,2014,16(11):4740−4748. doi: 10.1039/C4GC00854E
    [39]
    RANA M, TAKI G, ISLAM M N, AGARWAL A, JO Y T, PARK J H. Effects of temperature and salt catalysts on depolymerization of kraft lignin to aromatic phenolic compounds[J]. Energy Fuels,2019,33(7):6390−6404. doi: 10.1021/acs.energyfuels.9b00808
    [40]
    BISWAS B, KUMAR A, SAINI K, RAWAT S, KAUR R, KRISHNA B B, BHASKAR T. Catalytic hydrothermal liquefaction of alkali lignin at low temperature: Effect of acid and base catalysts on phenolic monomers production [J]. Biomass Convers Bior, 2022: 1−10.
    [41]
    YU S, DONG X, ZHAO P, LUO Z, SUN Z, YANG X, LI Q, WANG L, ZHANG Y, ZHOU H. Decoupled temperature and pressure hydrothermal synthesis of carbon sub-micron spheres from cellulose[J]. Nat Commun,2022,13(1):3616. doi: 10.1038/s41467-022-31352-x
    [42]
    YU S, XIE M, LI Q, ZHANG Y, ZHOU H. Evolution of kraft lignin during hydrothermal treatment under different reaction conditions[J]. J Energy Inst,2022,103:147−153. doi: 10.1016/j.joei.2022.06.005
    [43]
    XU C, ARANCON R A D, LABIDI J, LUQUE R. Lignin depolymerisation strategies: towards valuable chemicals and fuels[J]. Chem Soc Rev,2014,43(22):7485−7500. doi: 10.1039/C4CS00235K
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1316) PDF downloads(81) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return