Volume 51 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
LUO Chao, JIN Cai-di, ZHU Ling-jun, WANG Shu-rong. Preparation of furfural from xylose catalyzed by difunctional carbon-based solid acid[J]. Journal of Fuel Chemistry and Technology, 2023, 51(8): 1155-1164. doi: 10.19906/j.cnki.JFCT.2023030
Citation: LUO Chao, JIN Cai-di, ZHU Ling-jun, WANG Shu-rong. Preparation of furfural from xylose catalyzed by difunctional carbon-based solid acid[J]. Journal of Fuel Chemistry and Technology, 2023, 51(8): 1155-1164. doi: 10.19906/j.cnki.JFCT.2023030

Preparation of furfural from xylose catalyzed by difunctional carbon-based solid acid

doi: 10.19906/j.cnki.JFCT.2023030
Funds:  The project was supported by the National Key R&D Program of China (2018YFB1501500).
  • Received Date: 2023-03-03
  • Accepted Date: 2023-04-04
  • Rev Recd Date: 2023-04-03
  • Available Online: 2023-04-18
  • Publish Date: 2023-08-01
  • A bifunctional carbon-based solid acid catalyst was prepared by sulfonation of sulfuric acid to using gelatin and phytic acid (PA) as carbon sources and doping with FeCl3·6H2O and ZnCl2, which was used to efficiently catalyze the preparation of furfural from xylose. The catalysts prepared at different carbonization temperatures were characterized by SEM, BET, FT-IR and STEM-EDS techniques, and the physicochemical properties of the catalysts were revealed. The effects of carbonization temperature of the catalyst, molar ratio of FeCl3·6H2O to ZnCl2, reaction temperature, reaction time, volume ratio of γ-valerolactone (GVL) to H2O and catalyst dosage on the conversion of xylose to furfural (FF) were investigated. The results showed that the catalytic activity of CNPS600-Fe4-Zn2 was higher when the carbonization temperature was 600 ℃. The xylose conversion rate was 99.6%, and the molar yield of FF reached 85.8% when the reaction was carried out at 170 ℃ for 120 min using 0.03 g CNPS600-Fe4-Zn2 (the molar ratio of FeCl3·6H2O to ZnCl2 was 4∶2) as catalyst, 3 mL GVL/H2O (the volume ratio of was 9∶1) as solvent and 0.06 g xylose as raw material. In addition, the cyclic performance of the catalyst was tested. The FF molar yield and xylose conversion rate remained above 80% after 5 cycles, indicating that the catalyst had higher catalytic activity and better hydrothermal stability.
  • loading
  • [1]
    PERALTA-YAHYA P P, ZHANG F, DEL CARDAYRE S B, KEASLING J D. Microbial engineering for the production of advanced biofuels[J]. Nature,2012,488(7411):320−328. doi: 10.1038/nature11478
    [2]
    STEEN E J, KANG Y, BOKINSKY G, HU Z, SCHIRMER A, MCCLURE A, DEL CARDAYRE S B, KEASLING J D. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass[J]. Nature,2010,463(7280):559−U182. doi: 10.1038/nature08721
    [3]
    ZHANG L, YU H, WANG P, LI Y. Production of furfural from xylose, xylan and corncob in gamma-valerolactone using FeCl3·6H2O as catalyst[J]. Bioresour Technol,2014,151:355−360. doi: 10.1016/j.biortech.2013.10.099
    [4]
    LUO Y, LI Z, LI X, LIU X, FAN J, CLARK J H, HU C. The production of furfural directly from hemicellulose in lignocellulosic biomass: A review[J]. Catal Today,2019,319:14−24. doi: 10.1016/j.cattod.2018.06.042
    [5]
    SONG S, DI L, WU G, DAI W, GUAN N, LI L. Meso-Zr-Al-beta zeolite as a robust catalyst for cascade reactions in biomass valorization[J]. Appl Catal B: Environ,2017,205:393−403. doi: 10.1016/j.apcatb.2016.12.056
    [6]
    SONG S, FUNG KIN YUEN V, DI L, SUN Q, ZHOU K, YAN N. Integrating biomass into the organonitrogen chemical supply chain: Production of pyrrole and d-proline from furfural[J]. Angew Chem, Int Edit,2020,59(45):19846−19850. doi: 10.1002/anie.202006315
    [7]
    ZHANG L, TIAN L, SUN R, LIU C, KOU Q, ZUO H. Transformation of corncob into furfural by a bifunctional solid acid catalyst[J]. Bioresour Technol,2019,276:60−64. doi: 10.1016/j.biortech.2018.12.094
    [8]
    SUN K, SHAO Y, LIU P, ZHANG L, GAO G, DONG D, ZHANG S, HU G, XU L, HU X. A solid iron salt catalyst for selective conversion of biomass-derived C5 sugars to furfural[J]. Fuel,2021,300:120990. doi: 10.1016/j.fuel.2021.120990
    [9]
    ZHANG T, LI W, XU Z, LIU Q, MA Q, JAMEEL H, CHANG H, MA L. Catalytic conversion of xylose and corn stalk into furfural over carbon solid acid catalyst in γ-valerolactone[J]. Bioresour Technol,2016,209:108−114. doi: 10.1016/j.biortech.2016.02.108
    [10]
    WANG X, QIU M, TANG Y, YANG J, SHEN F, QI X, YU Y. Synthesis of sulfonated lignin-derived ordered mesoporous carbon for catalytic production of furfural from xylose[J]. Int J Biol Macromol,2021,187:232−239. doi: 10.1016/j.ijbiomac.2021.07.155
    [11]
    DAI Y, YANG S, WANG T, TANG R, WANG Y, ZHANG L. High conversion of xylose to furfural over corncob residue-based solid acid catalyst in water-methyl isobutyl ketone[J]. Ind Crop Prod,2022,180:114781. doi: 10.1016/j.indcrop.2022.114781
    [12]
    LI X, LU X, LIANG M, XU R, YU Z, DUAN B, LU L, SI C. Conversion of waste lignocellulose to furfural using sulfonated carbon microspheres as catalyst[J]. Waste Manage,2020,108:119−126. doi: 10.1016/j.wasman.2020.04.039
    [13]
    XIONG S, LUO C, YU Z, JI N, ZHU L, WANG S. Dual-functional carbon-based solid acid-induced hydrothermal conversion of biomass saccharides: catalyst rational design and kinetic analysis[J]. Green Chem,2021,23(21):8458−8467. doi: 10.1039/D1GC01968F
    [14]
    LIU C, WYMAN C E. The enhancement of xylose monomer and xylotriose degradation by inorganic salts in aqueous solutions at 180°C[J]. Carbohydr Res,2006,341(15):2550−2556. doi: 10.1016/j.carres.2006.07.017
    [15]
    KONWAR L J, MÄKI-ARVELA P, MIKKOLA J P. SO3H-containing functional carbon materials: Synthesis, structure, and acid catalysis[J]. Chem Rev,2019,119(22):11576−11630. doi: 10.1021/acs.chemrev.9b00199
    [16]
    YANG T, LI W, SU M, LIU Y, LIU M. Production of furfural from xylose catalyzed by a novel calcium gluconate derived carbon solid acid in 1, 4-dioxane[J]. New J Chem,2020,44(19):7968−7975. doi: 10.1039/D0NJ00619J
    [17]
    RUSANEN A, KUPILA R, LAPPALAINEN K, KÄRKKÄINEN J, HU T, LASSI U. Conversion of xylose to furfural over lignin-based activated carbon-supported iron catalysts[J]. Catalysts,2020,10(8):821. doi: 10.3390/catal10080821
    [18]
    WANG S, ZHAO Y, LIN H, CHEN J, ZHU L, LUO Z. Conversion of C5 carbohydrates into furfural catalyzed by a Lewis acidic ionic liquid in renewable γ-valerolactone[J]. Green Chem,2017,19(16):3869−3879. doi: 10.1039/C7GC01298E
    [19]
    MELLMER M A, SENER C, GALLO J M R, LUTERBACHER J S, ALONSO D M, DUMESIC J A. Solvent effects in acid-catalyzed biomass conversion reactions[J]. Angew Chem, Int Ed,2014,53(44):11872−11875. doi: 10.1002/anie.201408359
    [20]
    ARAUJO R O, CHAAR J D S, QUEIROZ L S, DA ROCHA FILHO G N, DA COSTA C E F, DA SILVA G C T, LANDERS R, COSTA M J F, GONÇALVES A A S, DE SOUZA L K C. Low temperature sulfonation of acai stone biomass derived carbons as acid catalysts for esterification reactions[J]. Energy Conv Manag,2019,196:821−830. doi: 10.1016/j.enconman.2019.06.059
    [21]
    LAM E, CHONG J H, MAJID E, LIU Y, HRAPOVIC S, LEUNG ACW, LUONG, J H T. Carbocatalytic dehydration of xylose to furfural in water[J]. Carbon,2012,50(3):1033−1043. doi: 10.1016/j.carbon.2011.10.007
    [22]
    GENG L, WANG Y, YU G, ZHU Y. Efficient carbon-based solid acid catalysts for the esterification of oleic acid[J]. Catal Commun,2011,13(1):26−30. doi: 10.1016/j.catcom.2011.06.014
    [23]
    YUAN C, WANG X, YANG X, ALGHAMDI A A, ALHARTHI F A, CHENG X, DENG Y. Sulfonic acid-functionalized core-shell Fe3O4@carbon microspheres as magnetically recyclable solid acid catalysts[J]. Chin Chem Lett,2021,32(6):2079−2085. doi: 10.1016/j.cclet.2020.11.027
    [24]
    PERŠIN Z, MAVER U, PIVEC T, MAVER T, VESEL A, MOZETIČ M, STANA-KLEINSCHEK K. Novel cellulose based materials for safe and efficient wound treatment[J]. Carbohydr Polym,2014,100:55−64. doi: 10.1016/j.carbpol.2013.03.082
    [25]
    QI W, HE C, WANG Q, LIU S, YU Q, WANG W, LEKSAWASDI N, WANG C, YUAN Z. Carbon-based solid acid pretreatment in corncob saccharification: Specific xylose production and efficient enzymatic hydrolysis[J]. ACS Sustainable Chem Eng,2018,6(3):3640−3648. doi: 10.1021/acssuschemeng.7b03959
    [26]
    XU S, YIN C, PAN D, HU F, WU Y, MIAO Y, GAO L, XIAO G. Efficient conversion of glucose into 5-hydroxymethylfurfural using a bifunctional Fe3 + modified Amberlyst-15 catalyst[J]. Sustainable Energy Fuels,2019,3(2):390−395. doi: 10.1039/C8SE00499D
    [27]
    YANG H, WANG L, JIA L, QIU C, PANG Q, PAN X. Selective decomposition of cellulose into glucose and levulinic acid over Fe-resin catalyst in NaCl solution under hydrothermal conditions[J]. Ind Eng Chem Res,2014,53(15):6562−6568. doi: 10.1021/ie500318t
    [28]
    TIAN S, WU Y, LI K, XIE H, REN H, ZHAO Y, MIAO Z, TAN Y. Isobutanol synthesis from syngas over Zn-Cr catalyst: Effect of Zn/Cr element ratio[J]. Energy Technol,2018,6(9):1805−1812. doi: 10.1002/ente.201700908
    [29]
    GONZALEZ-SERRANO E, CORDERO T, RODRIGUEZ-MIRASOL J, COTORUELO L, RODRIGUEZ J J. Removal of water pollutants with activated carbons prepared from H3PO4 activation of lignin from kraft black liquors[J]. Water Res,2004,38(13):3043−3050. doi: 10.1016/j.watres.2004.04.048
    [30]
    ZHAO Y, LU K, XU H, ZHU L, WANG S. A critical review of recent advances in the production of furfural and 5-hydroxymethylfurfural from lignocellulosic biomass through homogeneous catalytic hydrothermal conversion[J]. Renewable Sustainable Energy Rev,2021,139:110706. doi: 10.1016/j.rser.2021.110706
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (262) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return