Volume 52 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
JIANG Zao, XU Longjun, LIU Chenglun. Synthesis of Ni-MOF/Zn0.5Cd0.5S and the photocatalytic hydrogen production performance from wastewater[J]. Journal of Fuel Chemistry and Technology, 2024, 52(1): 97-104. doi: 10.19906/j.cnki.JFCT.2023051
Citation: JIANG Zao, XU Longjun, LIU Chenglun. Synthesis of Ni-MOF/Zn0.5Cd0.5S and the photocatalytic hydrogen production performance from wastewater[J]. Journal of Fuel Chemistry and Technology, 2024, 52(1): 97-104. doi: 10.19906/j.cnki.JFCT.2023051

Synthesis of Ni-MOF/Zn0.5Cd0.5S and the photocatalytic hydrogen production performance from wastewater

doi: 10.19906/j.cnki.JFCT.2023051
Funds:  The project was supported by the National Natural Science Foundation of China (52174157) and Innovative Talents Training Program for Chongqing Primary and Secondary School Students (CY220109).
  • Received Date: 2023-04-08
  • Accepted Date: 2023-06-12
  • Rev Recd Date: 2023-06-06
  • Available Online: 2023-06-27
  • Publish Date: 2024-01-09
  • In order to enhance the photocatalytic hydrogen production performance of Zn0.5Cd0.5S, Ni-MOF modified Zn0.5Cd0.5S composite photocatalyst was prepared by hydrothermal method. The structure and photoelectrochemical properties of the prepared samples were characterized by XRD, SEM, TEM, XPS and other analytical methods. The results show that Zn0.5Cd0.5S mainly presents a nano particle structure, and Ni-MOF is mainly composed of ultra-thin square sheets with a length of about 10 µm and a width of about 9 µm. When Ni-MOF is combined with Zn0.5Cd0.5S, the Zn0.5Cd0.5S nanoparticles deposit on the surface of the Ni-MOF square sheet, and the particle size is significantly reduced, reducing the aggregation of Zn0.5Cd0.5S nanoparticles. In addition, there is a blue shift in the light absorption range for the composite, but still excellent visible light response ability. In the landfill leachate mixed shale gas flowback wastewater, the 15% Ni-MOF/Zn0.5Cd0.5S shows the best photocatalytic hydrogen production performance. Under simulated sunlight, the hydrogen production after 3 h of illumination is up to 1887 µmol. The hydrogen production process satisfies the zero-level reaction, with a hydrogen production rate of 685.9 µmol/h, which is approximately 5.7 times as high as the hydrogen production rate of Zn0.5Cd0.5S.
  • loading
  • [1]
    LIU F F, JIN S, XIA Q X, et al. Research progress on construction and energy storage performance of MXene heterostructures[J]. J Energy Chem,2021,62:220−242. doi: 10.1016/j.jechem.2021.03.017
    [2]
    申雪然, 冯彩虹, 代政, 等. 电解海水制氢的研究进展[J]. 化工新型材料,2021,49(12):55−60.

    SHEN Xueran, FENG Caihong, DAI Zheng, et al. Progress on hydrogen generation by splitting seawater[J]. New Chem Mater,2021,49(12):55−60.
    [3]
    XIONG S, TANG R D, GONG D X, et al. Environmentally-friendly carbon nanomaterials for photocatalytic hydrogen production[J]. Chin J Catal, 2022, 43(7): 1719–1748.
    [4]
    YUE X Z, Yi S S, WANG R W, et al. Synergistic effect based NixCo1-x architected Zn0.75Cd0.25S nanocrystals: An ultrahigh and stable photocatalysts for hydrogen evolution from water splitting[J]. Appl Catal B: Environ,2018,224:17−26. doi: 10.1016/j.apcatb.2017.10.010
    [5]
    万晶晶, 张军, 王友转, 等. 海水制氢技术发展现状与展望[J]. 世界科技研究与发展,2022,44(2):172−184.

    (WAN Jingjing, ZHANG Jun, WANG Youzhuan, et al. Development status and prospect of hydrogen generation from seawater[J]. World Sci-Tech R & D,2022,44(2):172−184.
    [6]
    WAKERLEY D W, KUEHNEL M F, ORCHARD K L, et al. Solar-driven reforming of lignocellulose to H2 with a CdS/CdOx photocatalyst[J]. Nat Energy,2017,2(4):17021. doi: 10.1038/nenergy.2017.21
    [7]
    JI G Z, XU X Y, YANG H, et al. Enhanced hydrogen production from sawdust decomposition using hybrid-functional Ni-CaO-Ca2SiO4 Materials[J]. Environ Sci Technol,2017,51(19):11484−11492. doi: 10.1021/acs.est.7b03481
    [8]
    QI S Y, WANG D P, ZHAO Y D, et al. Core-shell g-C3N4@Zn0.5Cd0.5S heterojunction photocatalysts with high photocatalytic activity for the degradation of organic dyes[J]. J Mater Sci: Mater Electron,2019,30(5):5284−5296. doi: 10.1007/s10854-019-00828-w
    [9]
    SUN R R, SONG J G, ZHAO H T, et al. Control on the homogeneity and crystallinity of Zn0.5Cd0.5S nanocomposite by different reaction conditions with high photocatalytic activity for hydrogen production from water[J]. Mater Charact,2018,144:57−65. doi: 10.1016/j.matchar.2018.06.033
    [10]
    CHAN C C, CHANG C C, HSU C H, et al. Efficient and stable photocatalytic hydrogen production from water splitting over ZnxCd1-xS solid solutions under visible light irradiation[J]. Int J Hydrogen Energy,2014,39(4):1630−1639. doi: 10.1016/j.ijhydene.2013.11.059
    [11]
    MA L J, XU J, ZHAO S, et al. Construction of CoS2/Zn0.5Cd0.5S S-Scheme heterojunction for enhancing H2 evolution activity under visible light[J]. Chem Eur J,2021,27(63):15795−15805. doi: 10.1002/chem.202102811
    [12]
    MAURIN G, SERRE C, COOPER A, et al. The new age of MOFs and of their porous-related solids[J]. Chem Soc Rev,2017,46(11):3104−3107. doi: 10.1039/C7CS90049J
    [13]
    AL OBEIDLI A, BEN SALAH H, AL MURISI M, et al. Recent advancements in MOFs synthesis and their green applications[J]. Int J Hydrogen Energy,2022,47(4):2561−2593. doi: 10.1016/j.ijhydene.2021.10.180
    [14]
    WU T K, SHI Y Z, WANG Z W, et al. Unsaturated Ni-II centers mediated the coordination activation of benzylamine for enhancing photocatalytic activity over ultrathin Ni-MOF-74 nanosheets[J]. ACS Appl Mater Interfaces,2021,13(51):61286−61295. doi: 10.1021/acsami.1c20128
    [15]
    NIU L, ZHANG W G, LI H T, et al. The construction of double type II heterostructure from CdS and Ni-MOF-74 with two structures and enhanced mechanism of photocatalytic water splitting[J]. J Mater Sci,2022,57(10):5768−5787. doi: 10.1007/s10853-022-07014-0
    [16]
    张腾, 蒋灶, 杨政鑫, 等. ZnxCd1-xS光催化降解垃圾渗滤液及其产氢性能研究[J]. 燃料化学学报,2022,50(10):1299−1306.

    ZHANG Teng, JIANG Zao, YANG Zhengxin, et al. ZnxCd1-xS for photocatalytic degradation of landfill leachate and its hydrogen production activity[J]. J Fuel Chem Technol,2022,50(10):1299−1306.
    [17]
    HU M, SHU J H, XU L J, et al. A novel nonmetal intercalated high crystalline g-C3N4 photocatalyst for efficiency enhanced H2 evolution[J]. Int J Hydrogen Energy,2022,47(23):11841−11852. doi: 10.1016/j.ijhydene.2022.01.227
    [18]
    LI H Y, HAO X Q, LIU Y, et al. ZnxCd1-xS nanoparticles dispersed on CoAl-layered double hydroxide in 2D heterostructure for enhanced photocatalytic hydrogen evolution[J]. J Colloid Interface Sci,2020,572:62−73. doi: 10.1016/j.jcis.2020.03.052
    [19]
    郭沛然, 胡石林. Ni-MOF-74制备及其对CO的吸附性能[J]. 原子能科学技术,2020,54(4):8−590.

    GUO Peiran, HU Shilin. Preparation of Ni-MOF-74 and its adsorption property for CO[J]. At Energy Sci Technol,2020,54(4):8−590.
    [20]
    SHEN C C, LIU Y N, ZHOU X, et al. Large improvement of visible-light photocatalytic H2 evolution based on cocatalyst-free Zn0.5Cd0.5S synthesized through a two-step process[J]. Catal Sci Technol,2017,7(4):961−967. doi: 10.1039/C6CY02382G
    [21]
    CHEN J M, CHEN J Y, LI Y W. Hollow ZnCdS dodecahedral cages for highly efficient visible-light-driven hydrogen generation[J]. J Mater Chem A,2017,5(46):24116−24125. doi: 10.1039/C7TA07587A
    [22]
    TANG Y X, ZHANG D F, PU X P, et al. Snowflake-like Cu2S/Zn0.5Cd0.5S p-n heterojunction photocatalyst for enhanced visible light photocatalytic H2 evolution activity[J]. J Taiwan Inst Chem Eng,2019,96:487−495. doi: 10.1016/j.jtice.2018.12.021
    [23]
    YE H F, SHI R, YANG X, et al. P-doped ZnxCd1-xS solid solutions as photocatalysts for hydrogen evolution from water splitting coupled with photocatalytic oxidation of 5-hydroxymethylfurfural[J]. Appl Catal B: Environ,2018,233:70−79. doi: 10.1016/j.apcatb.2018.03.060
    [24]
    LI T, JIN Z L. Unique ternary Ni-MOF-74/Ni2P/MoSx composite for efficient photocatalytic hydrogen production: Role of Ni2P for accelerating separation of photogenerated carriers[J]. J Colloid Interface Sci,2022,605:385−397. doi: 10.1016/j.jcis.2021.07.098
    [25]
    WANG K, LI S L, LI Y J, et al. CoAl LDH in-situ derived CoAlP coupling with Ni2P form S-scheme heterojunction for efficient hydrogen evolution[J]. Int J Hydrogen Energy,2022,47(56):23618−23631. doi: 10.1016/j.ijhydene.2022.05.200
    [26]
    WANG H, YUAN, X Z, et al. Synthesis and applications of novel graphitic carbon nitride/metal-organic frameworks mesoporous photocatalyst for dyes removal[J]. Appl Catal B: Environ,2015,174:445−454.
    [27]
    GUO Y, LI J, YANG X X, et al. Zn0.5Cd0.5S/MIL-125-NH2(Ti) nanocomposites: Highly efficient and stable photocatalyst for hydrogen production under visible light[J]. Inorg Chem Commun,2020,112:107714. doi: 10.1016/j.inoche.2019.107714
    [28]
    HUANG D L, LI J, ZENG G M, et al. Facile construction of hierarchical flower-like Z-scheme AgBr/Bi2WO6 photocatalysts for effective removal of tetracycline: Degradation pathways and mechanism[J]. Chem Eng J,2019,375:121991. doi: 10.1016/j.cej.2019.121991
    [29]
    CAO R Y, YANG H C, ZHANG S W, et al. Engineering of Z-scheme 2D/3D architectures with Ni(OH)2 on 3D porous g-C3N4 for efficiently photocatalytic H2 evolution[J]. Appl Catal B: Environ,2019,258:117997. doi: 10.1016/j.apcatb.2019.117997
    [30]
    JIANG Z, XIAO C, YIN X Y, et al. Facile preparation of a novel Bi24O31Br10/nano-ZnO composite photocatalyst with enhanced visible light photocatalytic ability[J]. Ceram Int,2020,46(8):10771−10778. doi: 10.1016/j.ceramint.2020.01.087
    [31]
    DEMIRCIVI P, GULEN B, SIMSEK E B, et al. Enhanced photocatalytic degradation of tetracycline using hydrothermally synthesized carbon fiber decorated BaTiO3[J]. Mater Chem Phys,2020,241:122236. doi: 10.1016/j.matchemphys.2019.122236
    [32]
    LI Y B, JIN Z L, ZHANG L J, et al. Controllable design of Zn-Ni-P on g-C3N4 for efficient photocatalytic hydrogen production[J]. Chin J Catal,2019,40(3):390−402. doi: 10.1016/S1872-2067(18)63173-0
    [33]
    CHEN F, YANG Q, YAO F B, et al. Visible-light photocatalytic degradation of multiple antibiotics by AgI nanoparticle-sensitized Bi5O7I microspheres: Enhanced interfacial charge transfer based on Z-scheme heterojunctions[J]. J Catal,2017,352:160−170. doi: 10.1016/j.jcat.2017.04.032
    [34]
    蒋灶, 吴廷增, 徐龙君, 等. ZnxCd1-xS的共沉淀法制备及其光催化活性研究[J]. 太阳能学报,2022,43(5):105−112.

    JIANG Zao, WU Tingzeng, XU Longjun, et al. ZnxCd1-xS prepared by coprecipitation method and its photocatalytic activity[J]. Acta Energ Sol Sin,2022,43(5):105−112.
    [35]
    李艳, 李卓, 刘恩周. NiMoO4/ZnIn2S4 S-scheme异质结的制备及光催化产氢性能增强机制[J]. 聊城大学学报(自然科学版),2023,36(2):1−10.

    LI Yan, LI Zhuo, LIU Enzhou. Preparation of NiMoO4/ZnIn2S4 S-Scheme heterojunctions and enhancement mechanism of photocatalytic hydrogen production[J]. J Liaocheng Univ,2023,36(2):1−10.
    [36]
    薛晋波, 高国翔, 申倩倩, 等. 新型S型CdS-BiVO4异质结光电极的构筑及产氢性能研究[J]. 高等学校化学学报,2021,42(8):2493−2499.

    XUE Jinbo, GAO Guoxiang, SHEN Qianqian, et al. Construction of a novel S-scheme CdS-BiVO4 heterojunction photoelectrodes and research on hydrogen production[J]. Chem Res Chin Univ,2021,42(8):2493−2499.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (197) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return