Volume 52 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
DU Changyuan, SU Qian, XU Zhenyang, FU Mengqian, JIA Songyan, DONG Li. Lewis acid-base modulated lanthanum-doped zinc oxide catalyzed CO2 conversion to ethylene carbonate[J]. Journal of Fuel Chemistry and Technology, 2024, 52(3): 305-312. doi: 10.19906/j.cnki.JFCT.2023060
Citation: DU Changyuan, SU Qian, XU Zhenyang, FU Mengqian, JIA Songyan, DONG Li. Lewis acid-base modulated lanthanum-doped zinc oxide catalyzed CO2 conversion to ethylene carbonate[J]. Journal of Fuel Chemistry and Technology, 2024, 52(3): 305-312. doi: 10.19906/j.cnki.JFCT.2023060

Lewis acid-base modulated lanthanum-doped zinc oxide catalyzed CO2 conversion to ethylene carbonate

doi: 10.19906/j.cnki.JFCT.2023060
Funds:  The project was supported by National Natural Science Foundation of China (22178356, 22078329, 21890763).
  • Received Date: 2023-07-18
  • Accepted Date: 2023-08-14
  • Rev Recd Date: 2023-08-14
  • Available Online: 2023-09-18
  • Publish Date: 2024-03-10
  • The massive emission of the greenhouse gas CO2 has caused problems such as global warming and ecological damage. How to effectively utilize CO2 as a resource and create economic benefits has attracted much attention in recent years. In this paper, a series of La-doped ZnO catalysts were designed and synthesized targeting the synthesis of ethylene carbonate (EC) from CO2 and ethylene glycol (EG), which could modulate the Lewis acid-base sites on the ZnO surface, and the catalyst activity was investigated under additive-free conditions. La-ZnO-1%-550℃ had the best catalytic activity with 0.54% conversion of EG, 7.326 mmol/(h∙g) and 99% space-time yield and selectivity of EC at 130 ℃, 4 MPa CO2, and 1 h with good stability. Combined with the analysis of the crystal structure, morphology and surface acid-base of the catalysts, the results showed that La was uniformly distributed in the ZnO hollow nanosheets, and the surface of the La-doped ZnO calcined at 550 ℃ had the most Lewis acid-base sites, and the catalytic activity of the catalysts increased with the increase of moderate to strong Lewis acid-base sites.
  • loading
  • [1]
    MÜLLER L J, KÄTELHÖN A, BRINGEZU S, et al. The carbon footprint of the carbon feedstock CO2[J]. Energy Environ Sci,2020,13(9):2979−2992. doi: 10.1039/D0EE01530J
    [2]
    DAS S, PEREZ-RAMIREZ J, GONG J, et al. Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2[J]. Chem Soc Rev,2020,49(10):2937−3004. doi: 10.1039/C9CS00713J
    [3]
    LIU W, WANG Y, ZHANG J, et al. Large particle spherical poly-ionic liquid-solid base catalyst for high-efficiency transesterification of ethylene carbonate to prepare dimethyl carbonate[J]. Fuel,2022,324:124580−124590. doi: 10.1016/j.fuel.2022.124580
    [4]
    TOMISHIGE K, YASUDA H, YOSHIDA Y, et al. Catalytic performance and properties of ceria based catalysts for cyclic carbonate synthesis from glycol and carbon dioxide[J]. Green Chem,2004,6(4):201−214.
    [5]
    LIM Y N, LEE C, JANG H-Y. Metal-free synthesis of cyclic and acyclic carbonates from CO2 and alcohols[J]. Eur J Org Chem,2014,2014(9):1823−1826. doi: 10.1002/ejoc.201400031
    [6]
    HUANG S, LIU S, LI J, et al. Effective synthesis of propylene carbonate from propylene glycol and carbon dioxide by alkali carbonates[J]. Catal Lett,2006,112(3−4):187−191. doi: 10.1007/s10562-006-0201-0
    [7]
    MEHTA S, JOSHI K. From molecular adsorption to decomposition of methanol on various ZnO facets: A periodic DFT study[J]. Appl Surf Sci,2022,602:154150−154157. doi: 10.1016/j.apsusc.2022.154150
    [8]
    XUE L, ZHANG C, SHI T, et al. Unraveling the improved CO2 adsorption and COOH* formation over Cu-decorated ZnO nanosheets for CO2 reduction toward CO[J]. Chem Eng J,2023,452:139701−139714. doi: 10.1016/j.cej.2022.139701
    [9]
    LI P, ZHU S, HU H, et al. Influence of defects in porous ZnO nanoplates on CO2 photoreduction[J]. Catal Today,2019,335:300−305. doi: 10.1016/j.cattod.2018.11.068
    [10]
    ZHU H, YUAN Z, SHEN Y, et al. Conductometric acetic anhydride gas sensors based on S-doped porous ZnO microspheres with enhanced Lewis base interaction[J]. Sensors Actuat B-Chem,2022,373:132726−132741. doi: 10.1016/j.snb.2022.132726
    [11]
    JADHAV N H, SHINDE D R, SAKATE S S, et al. Ti(IV) doping: An effective strategy to boost Lewis acidic performance of ZnO catalyst in fluorescein dye synthesis[J]. Catal Commun,2019,120:17−22. doi: 10.1016/j.catcom.2018.11.008
    [12]
    SINGH K, NANCY, KAUR H, et al. ZnO and cobalt decorated ZnO NPs: Synthesis, photocatalysis and antimicrobial applications[J]. Chemosphere,2023,313:137322−137342. doi: 10.1016/j.chemosphere.2022.137322
    [13]
    TOMAZETT V K, CHACON G, MARIN G, et al. Ionic liquid confined spaces controlled catalytic CO2 cycloaddition of epoxides in BMIm. ZnCl3 and its supported ionic liquid phases[J]. J CO2 Util,2023,69:102400−102409. doi: 10.1016/j.jcou.2023.102400
    [14]
    ZONG X, JIN Y, LI Y, et al. Morphology-controllable ZnO catalysts enriched with oxygen-vacancies for boosting CO2 electroreduction to CO[J]. J CO2 Util,2022,61:102051−102060. doi: 10.1016/j.jcou.2022.102051
    [15]
    CHENG F, YANG J, YAN L, et al. Enhancement of La2O3 to Li-Mn/WO3/TiO2 for oxidative coupling of methane[J]. J Rare Earth,2020,38(2):167−174. doi: 10.1016/j.jre.2019.03.023
    [16]
    POORNAPRAKASH B, CHALAPATHI U, SUBRAMANYAM K, et al. Wurtzite phase Co-doped ZnO nanorods: Morphological, structural, optical, magnetic, and enhanced photocatalytic characteristics[J]. Ceram Int,2020,46(3):2931−2939. doi: 10.1016/j.ceramint.2019.09.289
    [17]
    AL-SULTAN F S, BASAHEL S N, NARASIMHARAO K. Yttrium oxide supported La2O3 nanomaterials for catalytic oxidative cracking of n-propane to olefins[J]. Catal Lett,2019,150(1):185−195.
    [18]
    RANJBARI A, DEMEESTERE K, KIM K-H, et al. Oxygen vacancy modification of commercial ZnO by hydrogen reduction for the removal of thiabendazole: Characterization and kinetic study[J]. Appl Catal B: Environ,2023,324:122265−122283. doi: 10.1016/j.apcatb.2022.122265
    [19]
    SUN K, ZHAN G, ZHANG L, et al. Highly sensitive NO2 gas sensor based on ZnO nanoarray modulated by oxygen vacancy with Ce doping[J]. Sensor Actuat B-Chem,2023,379:133294−133304. doi: 10.1016/j.snb.2023.133294
    [20]
    YANG J, WANG H, YANG H, et al. Efficient electroreduction of CO2 to syngas over ZIF-8 derived oxygen vacancy-rich ZnO nanomaterials[J]. New J Chem,2023,47(10):4992−4998. doi: 10.1039/D2NJ05378K
    [21]
    SCOTTI N, DANGATE M, GERVASINI A, et al. Unraveling the role of low coordination sites in a Cu metal nanoparticle: A step toward the selective synthesis of second generation biofuels[J]. ACS Catal,2014,4(8):2818−2826. doi: 10.1021/cs500581a
    [22]
    LIN L, LIU J, ZHANG X, et al. Effect of zeolitic hydroxyl nests on the acidity and propane aromatization performance of zinc nitrate impregnation-modified HZSM-5 zeolite[J]. Ind Eng Chem Res,2020,59(37):16146−16160. doi: 10.1021/acs.iecr.0c02596
    [23]
    JU F, WU T, WANG M, et al. Effect of nitrogen compounds on reactive adsorption desulfurization over NiO/ZnO-Al2O3-SiO2 adsorbents[J]. Ind Eng Chem Res,2019,58(29):13401−13407. doi: 10.1021/acs.iecr.9b01682
    [24]
    JIN L, WANG Y. Surface chemistry of methanol on different ZnO surfaces studied by vibrational spectroscopy[J]. Phys Chem Chem Phys,2017,19(20):12992−13001. doi: 10.1039/C7CP01715D
    [25]
    GONG Z-J, LI Y-R, WU H-L, et al. Direct copolymerization of carbon dioxide and 1, 4-butanediol enhanced by ceria nanorod catalyst[J]. Appl Catal B: Environ,2020,265:118524−118536. doi: 10.1016/j.apcatb.2019.118524
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (179) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return