Volume 52 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
CAI Zhiyang, ZHANG Junxian, WANG Xin, XIAO Huixia, GAO Yunfei, WANG Yifei. Chemical looping hydrogen generation with multi-layer core-shell oxygen carrier of Fe@Al-Ti[J]. Journal of Fuel Chemistry and Technology, 2024, 52(3): 353-361. doi: 10.19906/j.cnki.JFCT.2023072
Citation: CAI Zhiyang, ZHANG Junxian, WANG Xin, XIAO Huixia, GAO Yunfei, WANG Yifei. Chemical looping hydrogen generation with multi-layer core-shell oxygen carrier of Fe@Al-Ti[J]. Journal of Fuel Chemistry and Technology, 2024, 52(3): 353-361. doi: 10.19906/j.cnki.JFCT.2023072

Chemical looping hydrogen generation with multi-layer core-shell oxygen carrier of Fe@Al-Ti

doi: 10.19906/j.cnki.JFCT.2023072
  • Received Date: 2023-06-20
  • Accepted Date: 2023-08-28
  • Rev Recd Date: 2023-08-05
  • Available Online: 2023-09-28
  • Publish Date: 2024-03-10
  • Fe-Al-Ti oxygen carriers have good cycling stability and good properties of anti-carbon deposition in the chemical looping hydrogen generation (CLHG) process. However, the formation of FeAl2O4 reduces hydrogen yield and increases sintering. To weaken the formation of FeAl2O4 and to promote properties, the core-shell oxygen carriers of Fe@Al-Ti were prepared by self-assembly template combustion method, which took TiO2 as the inter-layer to separate Fe2O3 and Al2O3. The effect of multi-layer core-shell structure on reaction performance was evaluated on a fixed bed. The results indicated that the inter-layer of Fe@Al-Ti oxygen carriers effectively weakened the contact between Fe2O3 and Al2O3, thus reducing the formation of FeAl2O4 and improving properties of anti-sintering. The Fe@Al-Ti oxygen carriers significantly prevented carbon deposition and surface agglomeration, and had great cycling stability during the CLHG cycles. The core-shell oxygen carrier with a molar ratio of Al∶Ti=3.5∶1 got the highest carbon conversion rate and H2 yield, and oxygen storage capacity in a single cycle, with 57.4%, 75.0%, and 6.01 mmol/g, respectively, which were 28.4%, 30.0%, and 26.9% higher than those of non core-shell Fe-Al-Ti oxygen carriers.
  • loading
  • [1]
    JOHN A. Sustainable hydrogen production[J]. Science,2004,305(5686):972−974. doi: 10.1126/science.1103197
    [2]
    MERIEM M, NAJOUA B, NAUSIKA Q, et al. Toward sustainable hydrogen storage and carbon dioxide capture in post-combustion condition[J]. J Environ Chem Eng,2017,5(2):1628−1637. doi: 10.1016/j.jece.2017.03.003
    [3]
    MARTINO M, RUOCCO C, MELONI E, et al. Main hydrogen production processes: An overview[J]. Catalysts,2021,11(5):547. doi: 10.3390/catal11050547
    [4]
    KHAN M, SHAMIM T. Techno-economic assessment of a plant based on a three reactor chemical looping reforming system[J]. Int J Hydrogen Energy,2016,41(48):22677−22688.
    [5]
    LUIS F, ORTIZ M, GARCIA-LABIANO F, et al. Hydrogen production by chemical-looping reforming in a circulating fluidized bed reactor using Ni-based oxygen carriers[J]. J Power Sourc,2009,192(1):27−34. doi: 10.1016/j.jpowsour.2008.11.038
    [6]
    PAOLO C, GIOVANNI L, ALBERTO M, et al. Three-reactors chemical looping process for hydrogen production[J]. Int J Hydrogen Energy,2008,33(9):2233−2245. doi: 10.1016/j.ijhydene.2008.02.032
    [7]
    HSIEH T, XU D, ZHANG Y, et al. 250 kWth high pressure pilot demonstration of the syngas chemical looping system for high purity H2 production with CO2 capture[J]. Appl Energy,2018,230:1660−1672. doi: 10.1016/j.apenergy.2018.09.104
    [8]
    CHO W C, LEE D Y, SEO M W, et al. Continuous operation characteristics of chemical looping hydrogen production system[J]. Appl Energy,2014,113:1667−1674. doi: 10.1016/j.apenergy.2013.08.078
    [9]
    LIU T, YU Z, JIAO W, et al. Interaction of coal ashes with potassium-decorated Fe2O3/Al2O3 oxygen carrier in coal-direct chemical looping hydrogen generation (CLHG)[J]. J Energy Inst,2020,93(5):1790−1797. doi: 10.1016/j.joei.2020.03.010
    [10]
    WANG T, GAO Y, LIU Y, et al. Core-shell Na2WO4/CuMn2O4 oxygen carrier with high oxygen capacity for chemical looping oxidative dehydrogenation of ethane[J]. Fuel,2021,303:121286. doi: 10.1016/j.fuel.2021.121286
    [11]
    CHEN Y, GALINSKY N, WANG Z, et al. Investigation of perovskite supported composite oxides for chemical looping conversion of syngas[J]. Fuel,2014,134:521−530. doi: 10.1016/j.fuel.2014.06.017
    [12]
    KHAN M, SHAMIM T. Thermodynamic screening of suitable oxygen carriers for a three reactor chemical looping reforming system[J]. Int J Hydrogen Energy,2017,42(24):15745−15760. doi: 10.1016/j.ijhydene.2017.05.037
    [13]
    LUO M, YI Y, WANG S Z, WANG Z L, et al. Review of hydrogen production using chemical-looping technology[J]. Renewable Sustainable Energy Rev,2018,81(2):3186−3214.
    [14]
    GUO Q, CHENG Y, LIU Y, et al. Coal chemical looping gasification for syngas generation using an iron-based oxygen carrier[J]. Ind Eng Chem Res.,2014,53:78−86. doi: 10.1021/ie401568x
    [15]
    WANG J, LI K, WANG H, et al. Sandwich Ni-phyllosilicate@doped-ceria for moderate-temperature chemical looping dry reforming of methane[J]. Fuel Process Technol,2022,232:107268. doi: 10.1016/j.fuproc.2022.107268
    [16]
    CHEN S, SHI Q, XUE Z, SUN X, et al. Experimental investigation of chemical-looping hydrogen generation using Al2O3 or TiO2-supported iron oxides in a batch fluidized bed[J]. Int J Hydrogen Energy,2011,36(15):8915−8926. doi: 10.1016/j.ijhydene.2011.04.204
    [17]
    WU H, KU Y, HUANG Y, et al. Fabrication of iron-based oxygen carriers on various supports for chemical looping hydrogen generation[J]. Aerosol Air Qual,2021,21:200322. doi: 10.4209/aaqr.2020.06.0322
    [18]
    TOMON C, SARAWUTANUKUL S, PHATTHARASUPAKUN N, et al. Core-shell structure of LiMn2O4 cathode material reduces phase transition and Mn dissolution in Li-ion batteries[J]. Commun Chem,2022,5(1):54. doi: 10.1038/s42004-022-00670-y
    [19]
    HAO J, LIU B, MAENOSONO S, et al. One-pot synthesis of Au-M@SiO2 (M = Rh, Pd, Ir, Pt) core-shell nanoparticles as highly efficient catalysts for the reduction of 4-nitrophenol[J]. Scic Rep,2022,12(1):7615. doi: 10.1038/s41598-022-11756-x
    [20]
    RAMI M, FOROUZANDEHDEL S, SALAMI M, et al. Synthesis of the core/shell structure of polycaprolactone@curcumin-gluten for drug delivery applications[J]. Bio Res Appl Chem,2023,13(1):87.
    [21]
    XU K, LIU D, FENG L, et al. Mercury removal by Co3O4@TiO2@Fe2O3 magnetic core-shell oxygen carrier in chemical-looping combustion[J]. Fuel,2021,306:121604. doi: 10.1016/j.fuel.2021.121604
    [22]
    YIN X, WANG S, SUN R, et al. A Ce-Fe oxygen carrier with a core-shell structure for chemical looping steam methane reforming[J]. Ind Eng Chem Res,2020,59(21):9775−9786. doi: 10.1021/acs.iecr.0c00055
    [23]
    SUN Y, LI J, LI H, et al. Core-shell-like Fe2O3/MgO oxygen carriers matched with fluidized bed reactor for chemical looping reforming[J]. Chem Eng J,2022,431(2):134−143.
    [24]
    XU Z, ZHAO H, WEI Y, et al. Self-assembly template combustion synthesis of a core-shell CuO@TiO2-Al2O3 hierarchical structure as an oxygen carrier for the chemical-looping processes[J]. Combust Flame,2015,162(8):3030−3045. doi: 10.1016/j.combustflame.2015.05.006
    [25]
    LIANG Z, QIN W, DONG C, et al. Experimental and theoretical study of the interactions between Fe2O3/Al2O3 and CO[J]. Energies,2017,10(5):598.
    [26]
    ZHU M, CHEN S, SOOMRO A, et al. Effects of supports on reduction activity and carbon deposition of iron oxide for methane chemical looping hydrogen generation[J]. Appl Energy,2018,225:912−921. doi: 10.1016/j.apenergy.2018.05.082
    [27]
    POOYA L, ZAINAL A Z, MAEDEH M, et al. Conversion of the greenhouse gas CO2 to the fuel gas CO via the Boudouard reaction: A review[J]. Renewable Sustainable Energy Rev,2015,41:615−632. doi: 10.1016/j.rser.2014.08.034
    [28]
    马士伟. 基于改性Fe2O3/CeO2载氧体制氢特性研究[D]. 江苏: 东南大学, 2019.

    MA Shiwei. Research on hydrogen production characteristics based on modified Fe2O3/CeO2 oxygen carriers[D]. Jiangsu: Southeast University, 2019.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (112) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return