Turn off MathJax
Article Contents
DING Zixia, CAI Bo, CEN Kehui, CHEN Dengyu, MA Zhongqing. The effect of alkali and alkaline earth metals in biomass ash on the bio-oil components derived from biomass fast pyrolysis[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2023076
Citation: DING Zixia, CAI Bo, CEN Kehui, CHEN Dengyu, MA Zhongqing. The effect of alkali and alkaline earth metals in biomass ash on the bio-oil components derived from biomass fast pyrolysis[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2023076

The effect of alkali and alkaline earth metals in biomass ash on the bio-oil components derived from biomass fast pyrolysis

doi: 10.19906/j.cnki.JFCT.2023076
Funds:  The project was supported by the National Natural Science Foundation of China (52376214, 52076112), the Natural Science Foundation of Zhejiang Province (LY21E060001), the Key R & D Program of Zhejiang Province (2022C03092).
  • Received Date: 2023-09-11
  • Accepted Date: 2023-10-19
  • Rev Recd Date: 2023-10-04
  • Available Online: 2023-10-31
  • The alkali and alkaline earth metals (AAEMs) in biomass ash have a significant impact on the yield and component distribution of rapid plytic biooil. In this paper, corn straw is selected as the raw material. First, the effect of cascade deash removal pretreatment (distillation water, ammonium acetate and hydrochloric acid) on the selective removal of AAEMs and its biological oil components is studied, and then the effect of the type of AAEMs (K, Ca, Na and Mg), the concentration of chloride salt (0.5%, 2.5% and 5%), and the acid radical in metal salt(${\rm{SO}}_4^{2-} $, ${\rm{NO}}_3^- $, ${\rm{CO}}_3^{2-} $, ${\rm{HCO}}_3^- $, AC and ${\rm{PO}}_4^{3-} $)on the compound distribution of bio-oil was systematically investigated. The results show that in the process of ash removal pretreatment, with the deepening of the acidity of the ash removal solution, the removal rate of AAEMs gradually increases. According to the selective removal law of AAEMs in the process of cascade ash removal, their morphology in biomass can be divided into the following three groups, namely the water-soluble metal (K), the ion-exchanged metals (Ca and Mg), the acid-soluble metal (Na). The removal of AAEMs promoted the formation of levoglucosan (LG), while restrained the formation of ketones and furans. However, the incorporation of AAEMs in biomass presented an opposite variation trend. The AAEMs would act as catalyst during biomass pyrolysis which promoted the secondary cracking of LG, leading to the reduction of LG and increase of ketones and furans. In addition, different acid roots in potassium salt also have remarkable influence on the secondary cracking reaction of LG and the rupture of the aryl ether bond and the phenolic hydroxyl group in lignin. The influence of the acid roots on the secondary cracking reaction of LG was in the order of ${\rm{HCO}}_3^- $>${\rm{CO}}_3^{2-} $>AC>${\rm{PO}}_4^{3-} $>Cl>${\rm{NO}}_3^- $>${\rm{SO}}_4^{2-} $, while the influence of acid roots on the rupture of the aryl ether bond and the phenolic hydroxyl group was in the order of ${\rm{CO}}_3^{2-} $>Cl>${\rm{HCO}}_3^- $>${\rm{PO}}_4^{3-} $≈AC>${\rm{SO}}_4^{2-} $${\rm{NO}}_3^- $.
  • loading
  • [1]
    黄明, 朱亮, 马中青, 周秉亮, 刘晓欢, 叶结旺, 赵超. 金属改性分子筛催化热解木质素制取轻质芳烃[J]. 燃烧化学学报,2021,49(3):292−302.

    HUANG Ming, ZHU Liang, MA Zhong-qing, ZHOU Bing-liang, LIU Xiao-huan, YE Jie-wang, ZHAO Chao. Production of light aromatics from the fast pyrolysis of lignin catalyzed by metal-modified H-ZSM-5 zeolites[J]. Journal of Fuel Chemistry and Technology,2021,49(3):292−302.
    [2]
    朱亮, 黄明, 丁紫霞, 马中青. 烘焙脱氧毛竹与高密度聚乙烯共催化热解制备轻质芳烃[J]. 燃料化学学报,2022,50(8):993−1003. doi: 10.19906/j.cnki.JFCT.2022014

    ZHU Liang, HUANG Ming, DING Zi-Xia, MA Zhong-Qing. Production of light bio-aromatics from co-catalytic fast pyrolysis of torrefied bamboo and high-density polyethylene[J]. Journal of Fuel Chemistry and Technology,2022,50(8):993−1003. doi: 10.19906/j.cnki.JFCT.2022014
    [3]
    WANG S R, DAI G X, YANG H P, LUO Z Y. Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review[J]. Progress in Energy and Combustion Science,2017,62:33−86. doi: 10.1016/j.pecs.2017.05.004
    [4]
    CAI W, CHIKAYA K B, MA Z Q, HUANG M, XU J L, SHI Y H. Synergetic deoxygenation and demineralization of biomass by wet torrefaction pretreatment and its influence on the compound distribution of bio-oil during catalytic pyrolysis[J]. Journal of Analytical and Applied Pyrolysis,2023,174:106134. doi: 10.1016/j.jaap.2023.106134
    [5]
    CHEN D Y, CEN K H, CHEN F, MA Z Q, ZHOU J B, LI M. Are the typical organic components in biomass pyrolyzed bio-oil available for leaching of alkali and alkaline earth metallic species (AAEMs) from biomass?[J]. Fuel,2020,260:116347. doi: 10.1016/j.fuel.2019.116347
    [6]
    刘金淼, 马欣欣, 燕黄, 何艳峰, 刘广青. 碱/碱土金属浸渍对酸洗生物质热解影响研究[J]. 北京化工大学学报(自然科学版),2015,42(5):24−31. doi: 10.13543/j.cnki.bhxbzr.2015.05.004

    LIU Jing-sen, MA Xin-xin, YAN Huang, HE Yan-feng, LIU Guang-qing. Effect of alkaline/alkaline earth metal impregnation on pyrolysis of acid-washing biomass[J]. Journal of Beijing University of Chemical Technology ( Natural Science),2015,42(5):24−31. doi: 10.13543/j.cnki.bhxbzr.2015.05.004
    [7]
    HU R, WAN S Q, MAO F, WANG J. Changes in pyrolysis characteristics of agricultural residues before and after water washing[J]. Journal of Fuel Chemistry and Technology,2021,49(9):1239−1249. doi: 10.1016/S1872-5813(21)60073-7
    [8]
    ASTON J E, THOMPSON D N, WESTOVER T L. Performance assessment of dilute-acid leaching to improve corn stover quality for thermochemical conversion[J]. Fuel,2016,186:311−319. doi: 10.1016/j.fuel.2016.08.056
    [9]
    ZHANG Y J, LV P, WANG J F, WEI J T, CAO P W, BIE N X, BAI Y H, YU G S. Product characteristics of rice straw pyrolysis at different temperature: Role of inherent alkali and alkaline earth metals with different occurrence forms[J]. Journal of the Energy Institute,2022,101:201−208. doi: 10.1016/j.joei.2022.01.016
    [10]
    GUREVICH MESSINA L I, BONELLI P R, CUKIERMAN A L. Effect of acid pretreatment and process temperature on characteristics and yields of pyrolysis products of peanut shells[J]. Renewable Energy,2017,114:697−707. doi: 10.1016/j.renene.2017.07.065
    [11]
    CHEN H D, CHEN X L, QIAO Z, LIU H F. Release and transformation characteristics of K and Cl during straw torrefaction and mild pyrolysis[J]. Fuel,2016,167:31−39. doi: 10.1016/j.fuel.2015.11.059
    [12]
    LIN X N, KONG L S, CAI H Z, ZHANG Q F, BI D M, YI W M. Effects of alkali and alkaline earth metals on the co-pyrolysis of cellulose and high density polyethylene using TGA and Py-GC/MS[J]. Fuel Processing Technology,2019,71−78.
    [13]
    LENG E, COSTA M, GONG X, ZHENG A Q, LIU S J, XU M G. Effects of KCl and CaCl2 on the evolution of anhydro sugars in reaction intermediates during cellulose fast pyrolysis[J]. Fuel,2019,251:307−315. doi: 10.1016/j.fuel.2019.04.006
    [14]
    ZHANG H Y, MA Y, SHAO S S, XIAO R. The effects of potassium on distributions of bio-oils obtained from fast pyrolysis of agricultural and forest biomass in a fluidized bed[J]. Applied Energy,2017,208:867−877. doi: 10.1016/j.apenergy.2017.09.062
    [15]
    ZHAO S L, LIU M, ZHAO L, LIU J H. Effects of organic and inorganic metal salts on thermogravimetric pyrolysis of biomass components[J]. Korean Journal of Chemical Engineering,2017,34(12):3077−3084. doi: 10.1007/s11814-017-0209-8
    [16]
    蒋丽群, 岳元茂, 徐禄江, 钱乐, 刘世君, 赵增立, 李海滨, 廖艳芬. 预处理促进木质纤维素快速热解生成左旋葡聚糖[J]. 化工学报,2021,72(4):1825−1832.

    JIANG Li-qun, YUE Yuan-mao, XU Lu-jiang, QIAN Yue, LIU Shi-jun, ZHAO Zeng-li, LI Hai-bing, LIAO Yan-fen. Pretreatments promote levoglucosan production from lignocellulose via fast pyrolysis[J]. CIESC Journal,2021,72(4):1825−1832.
    [17]
    WANG C Y, XIA S P, YANG X W, ZHENG A Q, ZHAO Z L, LI H B. Oriented valorization of cellulose and xylan into anhydrosugars by using low-temperature pyrolysis[J]. Fuel,2021,291:120156. doi: 10.1016/j.fuel.2021.120156
    [18]
    ZHENG A Q, WANG Q, LIU S J, HUANG Z, WEI G Q, ZHAO K, WANG S, ZHAO Z L, LI H B. Selective sequential fractionation of biomass for quantitatively elucidating the compositional factors affecting biomass fast pyrolysis[J]. Journal of Analytical and Applied Pyrolysis,2021,156:105106. doi: 10.1016/j.jaap.2021.105106
    [19]
    HORNER H T, WAGNER B L. Calcium oxalate formation in higher plants [M]. Calcium Oxalate In Biological Systems. CRC Press. 2020: 53-72.
    [20]
    钱乐, 蒋丽群, 岳元茂, 赵增立. 催化热解生物质生成左旋葡聚糖酮的研究进展[J]. 化工学报,2020,71(12):5376−5387.

    QIAN Yue, JIANG Li-qun, YUE Yuan-mao, ZHAO Zeng-li. Research progress of catalytic pyrolysis of biomass to yield levoglucosenone[J]. CIESC Journal,2020,71(12):5376−5387.
    [21]
    YANG H, LI S, LIU B, CHEN Y, XIAO J, DONG Z, GONG M, CHEN H. Hemicellulose pyrolysis mechanism based on functional group evolutions by two-dimensional perturbation correlation infrared spectroscopy[J]. Fuel,2020,267:117302. doi: 10.1016/j.fuel.2020.117302
    [22]
    LOU R, WU S B, LV G J. Fast pyrolysis of enzymatic/mild acidolysis lignin from moso bamboo[J]. BioResources,2010,5(2):827−837. doi: 10.15376/biores.5.2.827-837
    [23]
    WANG S Q, LI Z H, BAI X Y, YI W M, FU P. Influence of inherent hierarchical porous char with alkali and alkaline earth metallic species on lignin pyrolysis[J]. Bioresource Technology,2018,268:323−331. doi: 10.1016/j.biortech.2018.07.117
    [24]
    王锐, 高明洋, 曹景沛. 碱/碱土金属催化松木屑快速热解机制[J]. 应用化学,2022,39(2):289−297.

    WANG Yue, GAO Ming-yang, CAO Jing-pei. Mechanism of rapid pyrolysis of pine chips catalyzed by alkali/alkaline earth metals[J]. Chinese Journal Of Applied Chemistry,2022,39(2):289−297.
    [25]
    孔令伟, 张冰磊, 郭晨, 贺洁雅. 金属盐添加剂对生物质热解特性影响研究进展[J]. 广东化工,2022,49(23):119−20 + 56.

    KONG Ling-wei, ZHANG Bing-lei, GUO Chen, HE Jie-ya. Research Progress on the Effects of Metal Additives on Biomass Pyrolysis Characteristics[J]. Guangdong Chemical Industry,2022,49(23):119−20 + 56.
    [26]
    CHEN H P, TANG Z Y, LIU B, CHEN W, HU J H, CHEN Y Q, YANG H P. The new insight about mechanism of the influence of K2CO3 on cellulose pyrolysis[J]. Fuel,2021,295:120617. doi: 10.1016/j.fuel.2021.120617
    [27]
    WANG L C, SHEN Y F. Pyrolysis characteristics of cellulosic biomass in the presence of alkali and alkaline-earth-metal (AAEM) oxalates[J]. Cellulose,2021,28(6):3473−3483. doi: 10.1007/s10570-021-03756-3
    [28]
    SUN T L, ZHANG L, YANG Y T, LI Y L, REN S X, DONG L L, LEI T Z. Fast Pyrolysis of Cellulose and the Effect of a Catalyst on Product Distribution[J]. International Journal of Environmental Research and Public Health,2022,19(24):16837. doi: 10.3390/ijerph192416837
    [29]
    MARATHE P S, OUDENHOVEN S R G, HEERSPINK P W, KERSTEN S R A, WESTERHOF R J M. Fast pyrolysis of cellulose in vacuum: The effect of potassium salts on the primary reactions[J]. Chemical Engineering Journal,2017,329:187−197. doi: 10.1016/j.cej.2017.05.134
    [30]
    MAYES H B, NOLTE M W, BECKHAM G T, SHANKS B H, BROADBELT L J. The Alpha–Bet(a) of Salty Glucose Pyrolysis: Computational Investigations Reveal Carbohydrate Pyrolysis Catalytic Action by Sodium Ions[J]. ACS Catalysis,2014,5(1):192−202.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (93) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return