Volume 52 Issue 5
May  2024
Turn off MathJax
Article Contents
WU Linyuan, WANG Yi, CHEN Zhaoying, TIAN Qingling, WANG Linru, FU Zijun, ZHAO Ning, WANG Xiaobo, HUANG Xin. Methane catalytic combustion over flame spray pyrolysis-synthesized Pd-Pt/CeO2 catalyst[J]. Journal of Fuel Chemistry and Technology, 2024, 52(5): 725-734. doi: 10.19906/j.cnki.JFCT.2023083
Citation: WU Linyuan, WANG Yi, CHEN Zhaoying, TIAN Qingling, WANG Linru, FU Zijun, ZHAO Ning, WANG Xiaobo, HUANG Xin. Methane catalytic combustion over flame spray pyrolysis-synthesized Pd-Pt/CeO2 catalyst[J]. Journal of Fuel Chemistry and Technology, 2024, 52(5): 725-734. doi: 10.19906/j.cnki.JFCT.2023083

Methane catalytic combustion over flame spray pyrolysis-synthesized Pd-Pt/CeO2 catalyst

doi: 10.19906/j.cnki.JFCT.2023083
Funds:  The project was supported by State Key Laboratory of Coal and CBM Co-mining (2022KF12), Shanxi Province Science and Technology Achievement Transformation Guidance Special Project (202204021301010), Shanxi Province Science and Technology Innovation Talent Team (202204051002025), National Natural Science Foundation of China (52004177).
  • Received Date: 2023-11-27
  • Accepted Date: 2023-12-11
  • Rev Recd Date: 2023-12-11
  • Available Online: 2024-01-18
  • Publish Date: 2024-05-01
  • Flame spray pyrolysis (FSP) is a versatile, rapid, and scalable preparation technique for the nanocatalysts. CeO2 and Pt-CeO2 carriers, Pd-Pt-CeO2 catalyst were synthesized by flame spray pyrolysis, and then Pd-Pt bimetallic catalysts were prepared by impregnation method, and as-obtained Pd-Pt catalysts were tested in the methane combustion. The physicochemical properties of the catalysts were characterized by ICP, XRD, TEM, BET, H2-TPR, XPS, and Raman. TEM results showed that Pd and Pt species were highly dispersed in CeO2 carriers in Pd-Pt/CeO2 catalysts. Compared with the Pd-Pt-CeO2(OS-FSP) catalyst prepared by one-step flame spray pyrolysis, the catalytic activity of the Pd-Pt/CeO2(0.25)-WI prepared by co-impregnation was higher, with its t50 reduced by 60 ℃, and no deactivation was seen for 60 h. It is attributed to the fact that the Pd-Pt/CeO2(0.25)-WI catalyst has a higher molar ratio of Pd0/Pd2+ and Ce3+/Ce4+ on the surface of the catalyst and more lattice oxygen, resulting in an excellent performance during the methane combustion.
  • loading
  • [1]
    MURATA K, KOSUGE D, OHYAMA J, et al. Exploiting metal-support interactions to tune the redox properties of supported Pd catalysts for methane combustion[J]. ACS Catal,2019,10:1381−1387.
    [2]
    LI T, YAO Y, HUANG Z, et al. Denary oxide nanoparticles as highly stable catalysts for methane combustion[J]. Nat Catal,2021,4:62−70. doi: 10.1038/s41929-020-00554-1
    [3]
    黄鑫, 焦熙, 黄国宝, 等. 甲烷催化燃烧钯基催化剂研究进展[J]. 低碳化学与化工,2023,48:147−154.

    HUANG Xin, JIAO Xi, HUANG Guobao, et al. Research progress on Pd-based catalysts for methane catalytic combustion[J]. Low-Carbon Chem Chem Eng,2023,48:147−154.
    [4]
    PENG S, LIN X, THOMPSON R L, et al. Wetland emission and atmospheric sink changes explain methane growth in 2020[J]. Nature,2022,612:477−482. doi: 10.1038/s41586-022-05447-w
    [5]
    KHOLOD N, EVANS M, PILCHER R C, et al. Global methane emissions from coal mining to continue growing even with declining coal production[J]. J Clean Prod,2020,256:120489. doi: 10.1016/j.jclepro.2020.120489
    [6]
    YASUMURA S, SAITA K, MIYAKAGE T, et al. Designing main-group catalysts for low-temperature methane combustion by ozone[J]. Nat Commun,2023,14:3926. doi: 10.1038/s41467-023-39541-y
    [7]
    FENG X, JIANG L, LI D, et al. Progress and key challenges in catalytic combustion of lean methane[J]. J Energy Chem,2022,75:173−215. doi: 10.1016/j.jechem.2022.08.001
    [8]
    HOU Z, DAI L, DENG J, et al. Electronically engineering water resistance in methane combustion with an atomically dispersed tungsten on PdO catalyst[J]. Angew Chem Int Ed,2022,61:202201655. doi: 10.1002/anie.202201655
    [9]
    LIU Z, XU G, ZENG L, et al. Anchoring Pt-doped PdO nanoparticles on γ-Al2O3 with highly dispersed La sites to create a methane oxidation catalyst[J]. Appl Catal B: Environ,2023,324:122259. doi: 10.1016/j.apcatb.2022.122259
    [10]
    WANG X, ZHANG X, CAO M, et al. Ordered mesoporous Pd-La/Al2O3 catalysts for enhanced methane combustion[J]. Energy Fuels,2022,36:6999−7005.
    [11]
    PARRES-ESCLAPEZ S, ILLÁN-GÓMEZ M J, DE LECEA C S M, et al. On the importance of the catalyst redox properties in the N2O decomposition over alumina and ceria supported Rh, Pd and Pt[J]. Appl Catal B: Environ,2010,96:370−378. doi: 10.1016/j.apcatb.2010.02.034
    [12]
    PARK J, KIM D, BYUN S W, et al. Impact of Pd: Pt ratio of Pd/Pt bimetallic catalyst on CH4 oxidation[J]. Appl Catal B: Environ,2022,316:121623. doi: 10.1016/j.apcatb.2022.121623
    [13]
    HUANG X, ZHANG X, DENG C, et al. Boosting methane catalytic combustion by confining PdO-Pd interfaces in zeolite nanosheets[J]. Fuel,2023,344:127693. doi: 10.1016/j.fuel.2023.127693
    [14]
    MURAVEV V, PARASTAEV A, VAN DEN BOSCH Y, et al. Size of cerium dioxide support nanocrystals dictates reactivity of highly dispersed palladium catalysts[J]. Science,2023,380:1174−1179. doi: 10.1126/science.adf9082
    [15]
    VAN VEGTEN N, MACIEJEWSKI M, KRUMEICH F, et al. Structural properties, redox behaviour and methane combustion activity of differently supported flame-made Pd catalysts[J]. Appl Catal B: Environ,2009,93:38−49. doi: 10.1016/j.apcatb.2009.09.010
    [16]
    CHIARELLO G L, GRUNWALDT J D, FERRI D, et al. Flame-synthesized LaCoO3-supported Pd: 1. Structure, thermal stability and reducibility[J]. J Catal,2007,252:127−136. doi: 10.1016/j.jcat.2007.10.004
    [17]
    STROBEL R, GRUNWALDT J D, CAMENZINDA, et al. Flame-made alumina supported Pd-Pt nanoparticles: Structural properties and catalytic behavior in methane combustion[J]. Catal Lett,2005,104:9−16. doi: 10.1007/s10562-005-7429-y
    [18]
    WANG N, LI S, ZONG Y, et al. Sintering inhibition of flame-made Pd/CeO2 nanocatalyst for low-temperature methane combustion[J]. J Aerosol Sci,2017,105:64−72. doi: 10.1016/j.jaerosci.2016.11.017
    [19]
    康建东. 铜基催化剂氧化低浓度甲烷的反应动力学及性能调控[D]. 重庆: 重庆大学, 2022.

    KANG Jiandong. Oxidation of low-concentration methane regulation of copper-based catalysts for reaction kinetics and performance[D]. Chongqing: Chongqing University, 2022.
    [20]
    XIONG H, KUNWAR D, JIANG D, et al. Engineering catalyst supports to stabilize PdOx two-dimensional rafts for water-tolerant methane oxidation[J]. Nat Catal,2021,4:830−839. doi: 10.1038/s41929-021-00680-4
    [21]
    EGGART D, HUANG X, ZIMINA A, et al. Operando XAS study of Pt-doped CeO2 for the nonoxidative conversion of methane[J]. ACS Catal,2022,12:3897−3908. doi: 10.1021/acscatal.2c00092
    [22]
    王晓波, 邓存宝, 邓汉忠, 等. 缺陷钙钛矿LaMnO3催化煤矿乏风瓦斯燃烧性能[J]. 煤炭学报,2022,47:1588−1595.

    WANG Xiaobo, DENG Cunbao, DENG Hanzhong, et al. Defective perovskite LaMnO3 catalysts for ventilation air methane combustion[J]. J China Coal Soc,2022,47:1588−1595.
    [23]
    YANG J, PENG M, REN G, et al. A hydrothermally stable irreducible oxide-modified Pd/MgAl2O4 catalyst for methane combustion[J]. Angew Chem Int Ed,2020,59:18522−18526. doi: 10.1002/anie.202009050
    [24]
    GÄNZLER A M, CASAPU M, MAURER F, et al. Tuning the Pt/CeO2 interface by in situ variation of the Pt particle size[J]. ACS Catal,2018,8:4800−4811. doi: 10.1021/acscatal.8b00330
    [25]
    LI F, LEI L, YI J, et al. Performance, structure and mechanisms of Pd catalyst supported on M-Doped (M= La, Ba and K) CeO2 for methane oxidation[J]. Catal Lett,2023,153:1847−1858. doi: 10.1007/s10562-022-04124-x
    [26]
    LEE J H, JO D Y, CHOUNG J W, et al. Roles of noble metals (M = Ag, Au, Pd, Pt and Rh) on CeO2 in enhancing activity toward soot oxidation: Active oxygen species and DFT calculations[J]. J Hazard Mater,2021,403:124085. doi: 10.1016/j.jhazmat.2020.124085
    [27]
    ZHANG L, SPEZZATI G, MURAVEV V, et al. Improved Pd/CeO2 catalysts for low-temperature NO reduction: activation of CeO2 lattice oxygen by Fe doping[J]. ACS Catal,2021,11:5614−5627. doi: 10.1021/acscatal.1c00564
    [28]
    LI T, XIA D, ZHOU G, et al. Effect of the morphology on the vapor phase benzene catalytic hydrogenation over Pd/CeO2 catalyst[J]. Catal Commun,2018,112:35−38. doi: 10.1016/j.catcom.2018.04.011
    [29]
    HUANG X, EGGART D, QIN G, et al. Methyl radical chemistry in non-oxidative methane activation over metal single sites[J]. Nat Commun,2023,14:5716. doi: 10.1038/s41467-023-41192-y
    [30]
    LEE J H, LEE B J, LEE D W, et al. Synergistic effect of Cu on a Ag-loaded CeO2 catalyst for soot oxidation with improved generation of active oxygen species and reducibility[J]. Fuel,2020,275:117930. doi: 10.1016/j.fuel.2020.117930
    [31]
    WANG B, CHEN B, SUN Y, et al. Effects of dielectric barrier discharge plasma on the catalytic activity of Pt/CeO2 catalysts[J]. Appl Catal B: Environ,2018,238:328−338. doi: 10.1016/j.apcatb.2018.07.044
    [32]
    MA J, LOU Y, CAI Y, et al. The relationship between the chemical state of Pd species and the catalytic activity for methane combustion on Pd/CeO2[J]. Catal Sci Technol,2018,8:2567−2577. doi: 10.1039/C8CY00208H
    [33]
    TU C, CHENG S. Ceria-modified palladium/activated carbon as a high-performance catalyst for crude caprolactam hydrogenation purification[J]. ACS Sustainable Chem Eng,2014,2:629−636. doi: 10.1021/sc400501w
    [34]
    YUE Y, LI Y, WANG T, et al. Enhancement of methanol oxidation performance over Pd/CeO2 derived from MOF and mechanism investigation via in situ studies[J]. Catal Lett,2022,152:3437−3446. doi: 10.1007/s10562-021-03901-4
    [35]
    LI S, ZHANG Y, SHI J, et al. Catalytic performance of palladium supported on sheaf-like ceria in the lean methane combustion[J]. Nanomaterials,2019,10:31. doi: 10.3390/nano10010031
    [36]
    GUO T, DU J, LI J. The effects of ceria morphology on the properties of Pd/ceria catalyst for catalytic oxidation of low-concentration methane[J]. J Mater Sci,2016,51:10917−10925. doi: 10.1007/s10853-016-0303-z
    [37]
    DANIELIS M, DIVINS N J, LLORCA J, et al. In situ investigation of the mechanochemically promoted Pd-Ce interaction under stoichiometric methane oxidation conditions[J]. EES Catal,2023,1:144−152. doi: 10.1039/D2EY00067A
    [38]
    PENG H, DONG T, YANG S, et al. Intra-crystalline mesoporous zeolite encapsulation derived thermally robust metal nanocatalyst in deep oxidation of light alkanes[J]. Nat Commun,2022,13:295. doi: 10.1038/s41467-021-27828-x
    [39]
    CUI X, ZHANG X, YANG Y, et al. The noble metals M (M = Pd, Ag, Au) decorated CeO2 catalysts derived from solution combustion method for efficient low-temperature CO catalytic oxidation: effects of different M loading on catalytic performances[J]. Nanotechnology,2022,33:415705. doi: 10.1088/1361-6528/ac7ed3
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (81) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return