Volume 52 Issue 5
May  2024
Turn off MathJax
Article Contents
REN Yuyao, ZHOU Guoli, LIU Haojie, TENG Daoguang, CAO Yijun, XING Baolin, LI Peng. Soluble conversion of Zhaotong lignite by ammonolysis and the occurrence forms of oxygen and nitrogen in soluble portion[J]. Journal of Fuel Chemistry and Technology, 2024, 52(5): 619-629. doi: 10.19906/j.cnki.JFCT.2023088
Citation: REN Yuyao, ZHOU Guoli, LIU Haojie, TENG Daoguang, CAO Yijun, XING Baolin, LI Peng. Soluble conversion of Zhaotong lignite by ammonolysis and the occurrence forms of oxygen and nitrogen in soluble portion[J]. Journal of Fuel Chemistry and Technology, 2024, 52(5): 619-629. doi: 10.19906/j.cnki.JFCT.2023088

Soluble conversion of Zhaotong lignite by ammonolysis and the occurrence forms of oxygen and nitrogen in soluble portion

doi: 10.19906/j.cnki.JFCT.2023088
Funds:  The project was supported by General Program of National Key Research and Development Program (2021YFC2902604),National Natural Science Foundation of China (52174262),Henan Provincial Science and Technology Research and Development Plan Joint Fund Project (222301420036) and China Postdoctoral Science Foundation (2022M712881).
  • Received Date: 2023-12-06
  • Accepted Date: 2024-01-05
  • Rev Recd Date: 2024-01-05
  • Available Online: 2024-01-30
  • Publish Date: 2024-05-01
  • Lignite is of high carbon content, rich in oxygen and nitrogen, and other heteroatoms, thereby is treated as an important raw material for the preparation of carbon materials. However, the preparation of carbon materials from lignite is faced with many challenges, due to the low soluble organic carbon content and the irregular distribution of heteroatoms. Therefore, it is necessary to achieve the soluble transformation of lignite. In this investigation, ammonia was applied to achieve the solubilization of Zhaotong lignite, and also the regulation of oxygen and nitrogen in soluble portion from lignite under mild conditions. As a result, Zhaotong lignite exhibits efficient thermal dissolution with a soluble portion yield of 76.66%, at the condition of ammonium concentration of 15%, temperature of 160 ℃, and reaction time of 3 h. Based on the characterization and analysis of soluble portion, the macromolecular structure of coal is changed by ammonolysis, mainly displaying the replacement of the hydroxyl group by the amino group or the formation of organic nitrogen groups by the direct reaction between the carboxyl or carbonyl groups with the amino group. By contrast, the occurrence forms of nitrogen in raw coal are mainly quaternary nitrogen and pyrrole nitrogen, while they in soluble matter are mainly amino nitrogen and pyridine nitrogen, indicating that amino or amide groups are formed during the thermal dissolution of lignite.
  • loading
  • [1]
    LI Z, WEI X, YAN H, et al. Advances in lignite extraction and conversion under mild conditions[J]. Energy Fuels,2015,29(11):6869−6886. doi: 10.1021/acs.energyfuels.5b01108
    [2]
    ZHANG Y, WEI X, LU J, et al. Characterization of nitrogen-containing aromatics in Baiyinhua lignite and its soluble portions from thermal dissolution[J]. Chin J Chem Eng,2019,27(11):2783−2787. doi: 10.1016/j.cjche.2019.06.001
    [3]
    WANG Y H, WEN J L, GUO L W, et al. Influence of oxygen-containing functional groups on carbon monoxide occurs in low rank coals[J]. 2012 Int Symp on Safety Sci Technol. 2012, 45: 967-972.
    [4]
    WANG L Y, XU Y L, JIANG S G, et al. Imidazolium based ionic liquids affecting functional groups and oxidation properties of bituminous coal[J]. Safety Sci,2012,50(7):1528−1534. doi: 10.1016/j.ssci.2012.03.006
    [5]
    LIU F, WEI X, FAN M, et al. Separation and structural characterization of the value-added chemicals from mild degradation of lignites: A review[J]. Appl Enegry,2016,170:415−436. doi: 10.1016/j.apenergy.2016.02.131
    [6]
    罗培培, 傅雪海. 我国褐煤共伴生资源分析及利用方向[J]. 煤炭科学技术,2012,40(12):118−121.

    LUO Peipei, FU Xuehai. Analysis and utilization direction on associated resources of lignite in China[J]. Coal Sci Technol,2012,40(12):118−121.
    [7]
    张明明. 褐煤热风流态化干燥分选一体化试验研究[D]. 徐州: 中国矿业大学, 2022.

    ZHANG Mingming. Integrated experiment of lignite hot-air fluidized drying and separating[D]. Xuzhou: China University of Mining and Technology, 2022.)
    [8]
    郝建秀, 丁志伟, 刘倩, 等. 褐煤解聚产物利用及分离研究进展[J]. 煤炭学报,2022,47(4):1679−1691.

    HAO Jianxiu, DING Zhiwei, LIU Qian, et al. Research progress on utilization and separation of depolymerized products of lignite[J]. J China Coal Soc,2022,47(4):1679−1691.
    [9]
    王铁民. 小龙潭褐煤的热溶解聚[D]. 徐州: 中国矿业大学, 2016.

    WANG Tiemin. Sequential thermal dissolution of Xiaolongtan lignite[D]. Xuzhou: China University of Mining and Technology, 2016.)
    [10]
    SHUI H, ZHOU Y, LI H, et al. Thermal dissolution of Shenfu coal in different solvents[J]. Fuel,2013,108:385−390. doi: 10.1016/j.fuel.2012.11.005
    [11]
    夏琴晔, 水恒福. 煤的热溶及其热溶物的应用研究[J]. 安徽工业大学学报(自然科学版),2021,38(2):152−160.

    XIA Qinye, SHUI Hengfu. A Study of thermal dissolution of coal and utilization of its soluble fraction[J]. J Anhui University Technol (Nat Sci),2021,38(2):152−160.
    [12]
    LI Z, WEI X, YAN H, et al. Characterization of soluble portions from thermal dissolution of Zhaotong lignite in cyclohexane and methanol[J]. Fuel Process Technol,2016,151:131−138. doi: 10.1016/j.fuproc.2016.05.029
    [13]
    LI S, ZONG Z, LIU J, et al. Changes in oxygen-functional moieties during sequential thermal dissolution and methanolysis of the extraction residue from Zhaotong lignite[J]. J Anal Appl Pyrolysis,2019,139:40−47. doi: 10.1016/j.jaap.2019.01.006
    [14]
    SHUI H F, HE F, WU Y, et al. Study on the use of the thermal dissolution soluble fraction from Shenfu sub-bituminous coal in coke-making coal blends[J]. Energy Fuels,2015,29(3):1558−1563. doi: 10.1021/ef502736a
    [15]
    张永, 杨琪, 邵渊, 等. 煤基功能炭材料的合成及储能应用[J]. 煤炭学报,2023,48(9):3522−3541.

    ZHANG Yong, YANG Qi, SHAO Yuan, et al. Synthesis and application in energy storage of coal-based functional carbon materials[J]. J China Coal Soc,2023,48(9):3522−3541.
    [16]
    ASHIDA R, NAKGAWA K, OGA M, et al. Fractionation of coal by use of high temperature solvent extraction technique and characterization of the fractions[J]. Fuel,2008,87(4/5):576−582. doi: 10.1016/j.fuel.2007.02.035
    [17]
    王知彩, 李良, 水恒福, 等. 先锋褐煤热溶及热溶物红外光谱表征[J]. 燃料化学学报,2011,39(6):401−406. doi: 10.1016/S1872-5813(11)60027-3

    WANG Zhicai, LI Liang, SHUI Hengfu, et al. High temperature thermal extraction of Xianfeng lignite and FT-IR characterization of its extracts and residues[J]. J Fuel Chem Technol,2011,39(6):401−406. doi: 10.1016/S1872-5813(11)60027-3
    [18]
    ZHANG Y, WEI X, LU J, et al. Identification of oxygen-containing aromatics in soluble portions from thermal dissolution and alkanolyses of Baiyinhua lignite[J]. Fuel Process Technol,2019,186:149−155. doi: 10.1016/j.fuproc.2018.12.021
    [19]
    GURUZ K. Oxy-ammoniation of Elbistan lignite to produce a nitrogenous fertilizer[J]. Fuel,1980,59:772−776. doi: 10.1016/0016-2361(80)90253-7
    [20]
    JOSE C, RICARDO A, ANTONIO B. Production of a nitrogenous humic fertilizer by the oxidation-ammoniation of lignite[J]. Ind Eng Chem Prod Res Dev,1984,23:620−624.
    [21]
    张德和, 陈步时, 李允阁, 等. 腐植酸的氨化机理的研究[J]. 化学学报,1978,36(3):171−181.

    ZHANG Dehe, CHEN Bushi, LI Yunge, et al. A study of ammoniation mechanism of humic acid[J]. Acta Chim Sin,1978,36(3):171−181.
    [22]
    晋云玲, 杨阿三, 孙勤, 等. 褐煤氧化氨解过程中腐植酸官能团含量的研究[J]. 高校化学工程学报,2010,24(3):446−450.

    JIN Yunling, YANG Asan, SUN Qin, et al. The Research on groups content of humic acid in brown coal during the ammoxidation process[J]. J Chem Eng Chin Univ,2010,24(3):446−450.
    [23]
    吴成林, 吴雷, 胥玉玲, 等. 酸洗脱灰对JH煤物化性能的影响研究[J]. 燃料与化工,2020,51(5):7−10.

    WU Chenglin, WU Lei, XU Yuling, et al. Research of the influence of acid-cleaning and deashing on physicochemical properties of JH coal[J]. Fuel Chem Processes,2020,51(5):7−10.
    [24]
    刘亚丽. Co基催化剂催化宁东褐煤及其模型化合物加氢转化[D]. 徐州: 中国矿业大学, 2021.

    LIU Yali. Catalytic hydroconversion of Ningdong lignite and coal model compounds over cobalt-based catalysts[D]. Xuzhou: China University of Mining and Technology. 2021.)
    [25]
    韩峰, 张衍国, 蒙爱红, 等. 云南褐煤结构的FT-IR分析[J]. 煤炭学报,2014,39(11):2293−2299.

    HAN Feng, ZHANG Yanguo, MENG Aihongg, et al. FT-IR analysis of Yunnan lignite[J]. J China Coal Soc,2014,39(11):2293−2299.
    [26]
    庞雁原, 杜铭华, 戴和武. 煤热解过程中酚类化合物生成机理及数学模型[J]. 煤炭转化,1995,(1):75−81.

    PANG Yanyuan, DU Minghua, DAI Hewu. Mechanism and mathematical model of phenolic compound formation during coal pyrolysis[J]. Coal Convers,1995,(1):75−81.
    [27]
    曾凡虎. 酸洗脱灰对乌拉盖褐煤热解和酚类分布的影响[D]. 大连: 大连理工大学, 2012.

    ZENG Fanhu. Effect of acid-washing on Wulagai lignite pyrolysis and distribution of phenols[D]. Dalian: Dalian University of Technology, 2012)
    [28]
    阚侃, 王珏, 付东, 等. 氮掺杂碳纤维包覆石墨烯纳米片的构建及电容特性[J]. 材料工程,2022,50(2):94−102.

    KAN Kan, WANG Jue, FU Dong, et al. Construction and capacitive performance of N-doped carbon nanofiber coated graphene nanosheets[J]. J Mater Eng,2022,50(2):94−102.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (37) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return