Volume 45 Issue 3
Mar.  2017
Turn off MathJax
Article Contents
LI Wei, CHI Ke-bin, MA Huai-jun, LIU Hao, QU Wei, TIAN Zhi-jian. Effect of supports on the catalytic performance of Pt/WO3-ZrO2 catalysts for hydroisomerization[J]. Journal of Fuel Chemistry and Technology, 2017, 45(3): 329-336.
Citation: LI Wei, CHI Ke-bin, MA Huai-jun, LIU Hao, QU Wei, TIAN Zhi-jian. Effect of supports on the catalytic performance of Pt/WO3-ZrO2 catalysts for hydroisomerization[J]. Journal of Fuel Chemistry and Technology, 2017, 45(3): 329-336.

Effect of supports on the catalytic performance of Pt/WO3-ZrO2 catalysts for hydroisomerization

  • Received Date: 2016-11-30
  • Rev Recd Date: 2017-01-24
  • Available Online: 2021-01-23
  • Publish Date: 2017-03-10
  • A series of WO3-ZrO2 solid acids were synthesized by calcining the equilibrium adsorbed peroxotungstic acid/hydrated zirconia precursors. The influences of peroxotungstic acid concentration and calcination temperature on the composition, structure and acidity of the obtained solid acids were evaluated by using XRD, UV-vis and NH3-TPD. Pt/WO3-ZrO2 catalysts were prepared by impregnation method and characterized by BET, H2-TPR and H2-TPD. The catalytic performance in the hydroisomerization of n-pentane was investigated. It was found that under the same calcination temperature, both the support acidity and the catalyst surface area first increase and then decrease with the increase of peroxotungstic acid concentration, and are maximized when the peroxotungstic acid concentration reaches 82 mmol W/L. When the peroxotungstic acid possesses the same concentration of 59 mmol W/L, the tetragonal zirconia fraction, support acidity and the catalyst surface area decrease with the increase of calcination temperature. When the peroxotungstic acid concentration and the calcination temperature of the support are 82 mmol W/L and 700℃ respectively, the obtained catalyst shows the best catalytic performance. The yield of isopentane reaches 57.7% under the reaction condition of ambient pressure, 250℃, n(H2)/n(n-C5H12)=3 and WHSV=1.0 h-1.
  • loading
  • [1]
    徐铁钢, 吴显军, 王刚, 李瑞峰.轻质烷烃异构化催化剂研究进展[J].化工进展, 2015, 34(2):397-401. http://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201502017.htm

    XU Tie-gang, WU Xian-jun, WANG Gang, LI Rui-feng. Light paraffin isomerization catalyst and its development[J]. Chem Ind Eng Prog, 2015, 34(2):397-401. http://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201502017.htm
    [2]
    WEYDA H, KÖHLER E. Modern refining concepts-an update on naphtha-isomerization to modern gasoline manufacture[J]. Catal Today, 2003, 81(1):51-55. doi: 10.1016/S0920-5861(03)00101-9
    [3]
    孔晓翠, 濮仲英, 于中伟.固体超强酸催化正戊烷异构化反应失活因素的考察[J].石油学报 (石油加工), 1999, 15(4):33-38. http://www.cnki.com.cn/Article/CJFDTOTAL-SXJG904.006.htm

    KONG Xiao-cui, PU Zhong-ying, YU Zhong-wei. Study on deactivation of solid super-acid catalyst for n-pentane isomerization[J]. Acta Pet Sin (Pet Process Sect), 1999, 15(4):33-38. http://www.cnki.com.cn/Article/CJFDTOTAL-SXJG904.006.htm
    [4]
    RESOFSZKI G, MUHLER M, SPRENGER S, WILD U, PAÁL Z. Electron spectroscopy of sulfated zirconia, its activity in n-hexane conversion and possible reasons of its deactivation[J]. Appl Catal A:Gen, 2003, 240(1/2):71-81. https://www.researchgate.net/publication/223640368_Electron_spectroscopy_of_sulfated_zirconia_its_activity_in_n-hexane_conversion_and_possible_reasons_of_its_deactivation
    [5]
    汪颖军, 张海菊, 孙博, 田性刚. WO3/ZrO2催化烷烃异构化反应研究进展[J].石油学报 (石油加工), 2009, 25(2):283-290. http://www.cnki.com.cn/Article/CJFDTotal-SXJG200902031.htm

    WANG Ying-jun, ZHANG Hai-ju, SUN Bo, TIAN Xing-gang. Research progress of WO3/ZrO2 in alkane isomerization[J]. Acta Pet Sin (Pet Process Sect), 2009, 25(2):283-290. http://www.cnki.com.cn/Article/CJFDTotal-SXJG200902031.htm
    [6]
    宋华, 宋华林, 崔雪涵, 张旭. Pd含量对SO42-/ZrO2-WO3固体超强酸催化剂其异构化性能的影响[J].燃料化学学报, 2012, 40(11):1346-1352. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18066.shtml

    SONG Hua, SONG Hua-lin, CUI Xue-han, ZHANG Xu. Effect of Pd content on the catalytic performance of SO42-/ZrO2-WO3 solid superacid in pentane isomerization[J]. J Fuel Chem Technol, 2012, 40(11):1346-1352. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18066.shtml
    [7]
    BARTON D G, SOLED S L, MEITZNER G D, FUENTES G A, IGLESIA E. Structural and catalytic characterization of solid acids based on zirconia modified by tungsten oxide[J]. J Catal, 1999, 181(1):57-72. doi: 10.1006/jcat.1998.2269
    [8]
    SANTIESTEBAN J G, VARTULI J C, HAN S, BASTIAN R D, CHANG C D. Influence of the preparative method on the activity of highly acidic WOx/ZrO2 and the relative acid activity compared with zeolites[J]. J Catal, 1997, 168(2):431-441. doi: 10.1006/jcat.1997.1658
    [9]
    SIGNORETTO M, SCARPA M, PINNA F, STRUKUL G, CANTON P, BENEDETTI A. WO3/ZrO2 catalysts by sol-gel processing[J]. J Non-Cryst Solids, 1998, 225(1):178-183.
    [10]
    VALIGI M, GAZZOLI D, PETTITI I, MATTEI G, COLONNA S, DE ROSSI S, FERRARIS G. WOx/ZrO2 catalysts. Part 1. Preparation, bulk and surface characterization[J]. Appl Catal A:Gen, 2002, 231(1/2):159-172.
    [11]
    HERNÁNDEZ-PICHARDO M L, MONTOYA J A, DEL ANGEL P, VARGAS A, NAVARRETE J. A comparative study of the WOx dispersion on Mn-promoted tungstated zirconia catalysts prepared by conventional and high-throughput experimentation[J]. Appl Catal A:Gen, 2008, 345(2):233-240. doi: 10.1016/j.apcata.2008.05.005
    [12]
    VALIGI M, GAZZOLI D, CIMINO A, PROVERBIO E. Ionic size and metal uptake of chromium (Ⅵ), molybdenum (Ⅵ), and tungsten (Ⅵ) species on ZrO2-based catalyst precursors[J]. J Phys Chem B, 1999, 103(51):11318-11326. doi: 10.1021/jp9922716
    [13]
    LORIDANT S, FECHE C, ESSAYEM N, FIGUERAS F. WOx/ZrO2 catalysts prepared by anionic exchange:In situ Raman investigation from the precursor solutions to the calcined catalysts[J]. J Phys Chem B, 2005, 109(12):5631-5637. doi: 10.1021/jp044494o
    [14]
    SHUPYK I, PIQUEMAL J Y, BRIOT E, VAULAY M J, CONNAN C, TRUONG S, ZAITSEV V, BOZON-VERDURAZ F. The use of low-nuclearity oxoperoxo molybdenum species to achieve high dispersions on zirconia materials[J]. Appl Catal A:Gen, 2007, 325(1):140-153. doi: 10.1016/j.apcata.2007.03.033
    [15]
    田戈, 徐云鹏, 徐竹生, 田志坚, 林励吾. Al助剂对超强酸WOx/ZrO2机械应力稳定性的改善[J].催化学报, 2008, 29(5):415-417. doi: 10.1016/S1872-2067(08)60041-8

    TIAN Ge, XU Yun-peng, XU Zhu-sheng, TIAN Zhi-jian, LIN Li-wu. Effect of aluminum on the mechanical stress stability of WOx/ZrO2 superacid[J]. Chin J Catal, 2008, 29(5):415-417. doi: 10.1016/S1872-2067(08)60041-8
    [16]
    TORAYA H, YOSHIMURA M, SOMIYA S. Calibration curve for quantitative-analysis of the monoclinic-tetragonal ZrO2 system by X-ray diffraction[J]. J Am Ceram Soc, 1984, 67(6):C119-C121.
    [17]
    BARTON D G, SHTEIN M, WILSON R D, SOLED S L, IGLESIA E. Structure and electronic properties of solid acids based on tungsten oxide nanostructures[J]. J Phys Chem B, 1999, 103(4):630-640. doi: 10.1021/jp983555d
    [18]
    ZHAO B Y, XU X P, MA H R, SUN D H, GAO J M. Monolayer dispersion of oxides and salts on surface of ZrO2 and its application in preparation of ZrO2-supported catalysts with high surface areas[J]. Catal Lett, 1997, 45(3/4):237-244. doi: 10.1023/A:1019048503124
    [19]
    王春明, 赵璧英, 谢有畅.盐类和氧化物在载体上自发单层分散研究新进展[J].催化学报, 2003, 24(6):475-482. http://www.cnki.com.cn/Article/CJFDTOTAL-CHUA200306016.htm

    WANG Chun-ming, ZHAO Bi-ying, XIE You-chang. Advances in the studies of spontaneous monolayer dispersion of oxides and salts on supports[J]. Chin J Catal, 2003, 24(6):475-482. http://www.cnki.com.cn/Article/CJFDTOTAL-CHUA200306016.htm
    [20]
    SCHEITHAUER M, GRASSELLI R K, KNÖZINGER H. Genesis and Structure of WOx/ZrO2 Solid Acid Catalysts[J]. Langmuir, 1998, 14(11):3019-3029. doi: 10.1021/la971399g
    [21]
    JIN T, YAMAGUCHI T, TANABE K. Mechanism of acidity generation on sulfur-promoted metal-oxides[J]. J Phys Chem, 1986, 90(20):4794-4796. doi: 10.1021/j100411a017
    [22]
    PANAGIOTOPOULOU P, KONDARIDES D I. Effects of alkali additives on the physicochemical characteristics and chemisorptive properties of Pt/TiO2 catalysts[J]. J Catal, 2008, 260(1):141-149. doi: 10.1016/j.jcat.2008.09.014
    [23]
    TSUCHIYA S, AMENOMIYA Y, CVETANOVI-R J. Study of metal catalysts by temperature programmed desorption. Ⅱ. Chemisorption of hydrogen on platinum[J]. J Catal, 1970, 19(3):245-255.
    [24]
    KHOOBIAR S. Particle to particle migration of hydrogen atoms on platinum-alumina catalysts from particle to neighboring particles[J]. J Phys Chem, 1964, 68(2):411-412. doi: 10.1021/j100784a503
    [25]
    IGLESIA E, BARTON D G, SOLED S L, MISEO S, BAUMGARTNER J E, GATES W E, FUENTES G A, MEITZNER G D. Selective isomerization of alkanes on supported tungsten oxide acids[J]. Stud Surf Sci Catal, 1996, 101:533-542. doi: 10.1016/S0167-2991(96)80264-3
    [26]
    SHISHIDO T, HATTORI H. Spillover of hydrogen over zirconium oxide promoted by sulfate ion and platinum[J]. Appl Catal A:Gen, 1996, 146(1):157-164. doi: 10.1016/0926-860X(96)00161-5
    [27]
    TRIWAHYONO S, YAMADA T, HATTORI H. IR study of acid sites on WO3-ZrO2[J]. Appl Catal A:Gen, 2003, 250(1):75-81. doi: 10.1016/S0926-860X(03)00303-X
    [28]
    CHEN K, BELL A T, IGLESIA E. The relationship between the electronic and redox properties of dispersed metal oxides and their turnover rates in oxidative dehydrogenation reactions[J]. J Catal, 2002, 209(1):35-42. doi: 10.1006/jcat.2002.3620
    [29]
    BAERTSCH C D, SOLED S L, IGLESIA E. Isotopic and chemical titration of acid sites in tungsten oxide domains supported on zirconia[J]. J Phys Chem B, 2001, 105(7):1320-1330. doi: 10.1021/jp003073d
    [30]
    PRINS R. Hydrogen Spillover. Facts and fiction[J]. Chem Rev, 2012, 112(5):2714-2738. doi: 10.1021/cr200346z
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (100) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return