Volume 47 Issue 10
Oct.  2019
Turn off MathJax
Article Contents
XU Bin, GAO Rui, DAI Zheng-hua, LIU Hai-feng, WANG Fu-chen. Study on gas and solid phase products of rapid pyrolysis process of oil slurry at high temperature[J]. Journal of Fuel Chemistry and Technology, 2019, 47(10): 1181-1186.
Citation: XU Bin, GAO Rui, DAI Zheng-hua, LIU Hai-feng, WANG Fu-chen. Study on gas and solid phase products of rapid pyrolysis process of oil slurry at high temperature[J]. Journal of Fuel Chemistry and Technology, 2019, 47(10): 1181-1186.

Study on gas and solid phase products of rapid pyrolysis process of oil slurry at high temperature

Funds:

National Key R & D Program of China 2018YFB0605000

National Natural Science Foundation of China 21776087

Program of Shanghai Technology Research Leader 19XD1434800

  • Received Date: 2019-06-10
  • Rev Recd Date: 2019-07-31
  • Available Online: 2021-01-23
  • Publish Date: 2019-10-10
  • The characteristics of high temperature rapid pyrolysis of oil slurry were studied by using a rapid pyrolysis device of high-frequency furnace. The effects of pyrolysis temperature and nitrogen flow rate on the compositions and yields of gas and solid phase products were investigated. The results show that the temperature is the key factor to affect the yields of gas phase products. The gas phase products are mainly methane, hydrogen and ethylene. Higher temperature can increase the yields of hydrogen and methane, while the yield of ethylene is affected by the secondary reaction at high temperature and decreased gradually after reaching the maximum at 800℃. The yields of ethane and propylene are lower, and gradually decrease after reaching the maximum at 700℃ due to the secondary reaction. A small amount of acetylene is formed when the temperature is higher than 800℃ and the yield of acetylene will be increased by increasing the temperature. Meanwhile, increasing the nitrogen flow rate can reduce the partial pressure of methane and hydrogen and shorten the residence time of ethylene and propylene in the high temperature area, leading to an increase in the yield of gas phase products. The yield of carbon deposition increases rapidly with the increase of temperature, while the increase of nitrogen flow rate could weaken the secondary reaction and reduce the yield of carbon deposition.
  • loading
  • [1]
    仲理科, 孙治谦, 任相军, 徐姗姗, 陈阿强, 王振波.催化裂化油浆脱固方法研究进展[J].石油化工, 2017, 46(9):1209-1213. doi: 10.3969/j.issn.1000-8144.2017.09.019

    ZHONG Li-ke, SUN Zhi-qian, REN Xiang-jun, XU Shan-shan, CHEN A-qiang, WANG Zhen-bo. Research progress of catalytic cracking slurry dehardening method[J]. Petrochem Technol, 2017, 46(9):1209-1213. doi: 10.3969/j.issn.1000-8144.2017.09.019
    [2]
    XUE Y, GE Z, LI F, SU S, LI B. Modified asphalt properties by blending petroleum asphalt and coal tar pitch[J]. Fuel, 2017, 207:64-70. doi: 10.1016/j.fuel.2017.06.064
    [3]
    李耀伟.催化裂化油浆改善沥青品质的优化研究[D].山东: 山东科技大学, 2006.

    LI Yao-wei. Optimization of catalytic cracking slurry to improve asphalt quality[D]. Shandong: Shandong University of Science and Technology, 2006.
    [4]
    SYROEZHKO A M, PROSKURYAKOV V A, BEGAK O Y, FEDOROV V V, KORCHEMKIN S N, SOKOLOVA Y V, KUZNETSOVA O Y. Softeners for rubber and corrosion-resistant coatings based on shale and petroleum raw materials[J]. Russ J Appl Chem, 2001, 74(7):1235-1239. doi: 10.1023/A:1013008126894
    [5]
    LI P, XIONG J, GE M, SUN J, ZHANG W, SONG Y. Preparation of pitch-based general purpose carbon fibers from catalytic slurry oil[J]. Fuel Process Technol, 2015, 140:231-235. doi: 10.1016/j.fuproc.2015.09.011
    [6]
    GUNNING, HARRY E. Atomic and free radical reactions[J]. J Am Chem Soc, 1955, 77(8):2347-2348. http://cn.bing.com/academic/profile?id=b5629e74e7283e1d9704fadc25acf9ef&encoded=0&v=paper_preview&mkt=zh-cn
    [7]
    RANZI E, DENTE M, GOLDANIGA A, BOZZANO G, FARAVELLI T. Lumping procedures in detailed kinetic modeling of gasification, pyrolysis, partial oxidation and combustion of hydrocarbon mixtures[J]. Prog Energy Combust Sci, 2001, 27(1):99-139. doi: 10.1016/S0360-1285(00)00013-7
    [8]
    GHASSABZADEH H, DARIAN J T, ZAHERI R. Experimental study and kinetic modeling of kerosene thermal cracking[J]. J Anal Appl Pyrolysis, 2009, 86(1):221-232. doi: 10.1016/j.jaap.2009.06.006
    [9]
    周治.石脑油制低碳烯烃的影响因素研究[J].石油化工, 2018, 47(4):338-343. doi: 10.3969/j.issn.1000-8144.2018.04.006

    ZHOU Zhi. Study on influencing factors of naphtha to produce low carbon olefin[J]. Petrochem Technol, 2018, 47(4):338-343. doi: 10.3969/j.issn.1000-8144.2018.04.006
    [10]
    CORMA A, ORCHILLES A V. Current views on the mechanism of catalytic cracking[J]. Microporous Mesoporous Mater, 2000, 35:21-30. http://www.sciencedirect.com/science/article/pii/S138718119900205X
    [11]
    陈俊武.催化裂化工艺与工程[M]. 2版.北京:中国石化出版社, 2005.

    CHEN Jun-wu. Catalytic Cracking Process and Engineering[M]. 2nd ed, Beijing:China Petrochemical Press, 2005.
    [12]
    AFSHAREBRAHIMI A, TARIGHI S. The influence of temperature and catalyst additives on catalytic cracking of a heavy fuel oil[J]. Petrol Sci Technol, 2015, 33(4):415-421. doi: 10.1080/10916466.2014.987298
    [13]
    KHATTAF A, FAHAD S S, ALI, AHMED S. Catalytic cracking of arab super light crude oil to light olefins:An experimental and kinetic study[J]. Energy Fuels, 2018, 32(2):2234-2244. doi: 10.1021/acs.energyfuels.7b04045
    [14]
    HAGHIGHI S S, RAHIMPOUR M R, RAEISSI S, DEHGHANI O. Investigation of ethylene production in naphtha thermal cracking plant in presence of steam and carbon dioxide[J]. Chem Eng J, 2013, 228:1158-1167. doi: 10.1016/j.cej.2013.05.048
    [15]
    廖世健, 张吉人.甲烷部分燃烧制乙炔时产物组成的理论探讨[J].燃料化学学报, 1966, 7(1):1-7. http://www.cnki.com.cn/Article/CJFDTotal-RLHX196601000.htm

    LIAO Shi-jian, ZHANG Ji-ren. Theoretical discussion on the product composition of acetylene produced by partial combustion of methane[J]. J Fuel Chem Technol, 1966, 7(1):1-7. http://www.cnki.com.cn/Article/CJFDTotal-RLHX196601000.htm
    [16]
    田立达.天然气制乙炔工艺高级炔烃聚合机理探析[J].天然气化工, 2014, 39(3):16-20. doi: 10.3969/j.issn.1001-9219.2014.03.004

    TIAN Li-da. Analysis on the polymerization mechanism of advanced alkyne in natural gas acetylene process[J]. Nat Gas Chem Ind, 2014, 39(3):16-20. doi: 10.3969/j.issn.1001-9219.2014.03.004
    [17]
    HONG Y. Advances in technology for preparation of acetylene via partial oxidation of natural gas[J]. China Pet Process Pet Technol, 2010, 12(2):8-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsyjgysyhgjs201002002
    [18]
    张浩, 朱凤森, 李晓东, 吴昂键, 薄拯, 岑可法.旋转滑动弧氩等离子体裂解甲烷制氢[J].燃料化学学报, 2016, 44(2):192-200. doi: 10.3969/j.issn.0253-2409.2016.02.009

    ZHANG Hao, ZHU Feng-sen, LI Xiao-dong, WU Ang-jian, BO Zheng, CEN Ke-fa. Rotating sliding-arc argon plasma cracking methane to produce hydrogen[J]. J Fuel Chem Technol, 2016, 44(2):192-200. doi: 10.3969/j.issn.0253-2409.2016.02.009
    [19]
    YAN B, CHENG Y, LI T, CHENG Y. Detailed kinetic modeling of acetylene decomposition/soot formation during quenching of coal pyrolysis in thermal plasma[J]. Energy, 2017, 121:10-20. doi: 10.1016/j.energy.2016.12.130
    [20]
    LAHAYE J, BADIE P, DUCRET J. Mechanism of carbon formation during steamcracking of hydrocarbons[J]. Carbon, 1977, 15(2):87-93. doi: 10.1016/0008-6223(77)90022-7
    [21]
    HARRIS S J, WEINER A M. Soot particle growth in premixed toluene/ethylene flames[J]. Combust Sci Technol, 1984, 38(1/2):75-87. doi: 10.1080/00102208408923764
    [22]
    瞿国华.延迟焦化工艺与工程[M].北京:中国石化出版社, 2008.

    QU Guo-hua. Delayed Coking Process and Engineering[M]. Beijing:China Petrochemical Press, 2008.
    [23]
    王刚, 吴永涛, 徐春明, 刘维康, 高金森. FCC汽油催化裂解生产低碳烯烃的研究[J].燃料化学学报, 2009, 37(5):552-559. doi: 10.3969/j.issn.0253-2409.2009.05.007

    WANG Gang, WU Yong-tao, XU Chun-ming, LIU Wei-kang, GAO Jin-sen. Study on catalytic pyrolysis of FCC gasoline to produce low carbon alkenes[J]. J Fuel Chem Technol, 2009, 37(5):552-559. doi: 10.3969/j.issn.0253-2409.2009.05.007
    [24]
    陈滨.乙烯工学[M].北京:化学工业出版社, 1997.

    CHEN Bin. Ethylene Engineering[M]. Beijing:Chemical Industry Press, 1997.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (88) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return