Volume 48 Issue 5
May  2020
Turn off MathJax
Article Contents
CHAI Mei-yun, LIU Rong-hou, HE Yi-feng, LI Chong. Effect of ZSM-5 on hydrocarbon selectivity of corn stalk catalytic pyrolysis at different pyrolysis temperatures[J]. Journal of Fuel Chemistry and Technology, 2020, 48(5): 577-583.
Citation: CHAI Mei-yun, LIU Rong-hou, HE Yi-feng, LI Chong. Effect of ZSM-5 on hydrocarbon selectivity of corn stalk catalytic pyrolysis at different pyrolysis temperatures[J]. Journal of Fuel Chemistry and Technology, 2020, 48(5): 577-583.

Effect of ZSM-5 on hydrocarbon selectivity of corn stalk catalytic pyrolysis at different pyrolysis temperatures

Funds:

the National Natural Science Foundation of China 51776127

  • Received Date: 2020-02-24
  • Rev Recd Date: 2020-04-29
  • Available Online: 2021-01-23
  • Publish Date: 2020-05-10
  • In order to study the effect of ZSM-5 on the catalytic pyrolysis characteristic and hydrocarbon selectivity of corn stalk catalytic pyrolysis at different pyrolysis temperatures, the thermogravimetric analysis (TGA) was used to obtain the TG and DTG profiles of corn stalk pyrolysis with and without ZSM-5, and the pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) tests were conducted to analyze the products distribution of corn stalk pyrolysis with and without ZSM-5 at 450, 500, 550, and 600 ℃. The results show that ZSM-5 can decrease the pyrolysis temperature at the highest pyrolysis rate by 23 ℃. Without ZSM-5, both the categories of pyrolysis compounds and the hydrocarbon yield increase with the increase of pyrolysis temperature, and the selectivity of hydrocarbon reaches to the highest value of 11.33% at 600 ℃. However, with ZSM-5, the hydrocarbon yield increases at first and then decreases with the increase of pyrolysis temperature, and the selectivity of hydrocarbon is up to the highest value of 29.24% at 550 ℃. Toluene, indene, naphthalene and 2-methyl-naphthalene are evolved as the main compounds with ZSM-5. And the maximum yields of toluene and naphthalene reach to 4.76% and 3.96%, respectively.
  • loading
  • [1]
    CHEN D Y, GAO D X, CAPAREDA S C, HUANG S C, WANG Y. Effects of hydrochloric acid washing on the microstructure and pyrolysis bio-oil components of sweet sorghum bagasse[J]. Bioresour Technol, 2019, 277:37-45. doi: 10.1016/j.biortech.2019.01.023
    [2]
    HU J J, LI C, GUO Q H, DANG J T, ZHANG Q G, LEE D J, YANG Y L. Syngas production by chemical-looping gasification of wheat straw with Fe-based oxygen carrier[J]. Bioresour Technol, 2018, 263:273-279. doi: 10.1016/j.biortech.2018.02.064
    [3]
    MEI Y F, CHAI M Y, SHEN C J, LIU B B, LIU R H. Effect of methanol addition on properties and aging reaction mechanism of bio-oil during storage[J]. Fuel, 2019, 244:499-507. doi: 10.1016/j.fuel.2019.02.012
    [4]
    CHEN T J, DENG C J, LIU R H. Effect of selective condensation on the characterization of bio-oil from pine sawdust fast pyrolysis using a fluidized-bed reactor[J]. Energy Fuels, 2010, 24(12):6616-6623. doi: 10.1021/ef1011963
    [5]
    HUBER G W, IBORRA S, CORMA A. Synthesis of Transportation Fuels from Biomass:Chemistry, Catalysts, and Engineering[M]. United States:Chemical Reviews, 2006.
    [6]
    WANG S R, DAI G X, YANG H P, LUO Z Y. Lignocellulosic biomass pyrolysis mechanism:A state-of-the-art review[J]. Prog Energy Combust Sci, 2017, 62:33-86. doi: 10.1016/j.pecs.2017.05.004
    [7]
    JAE J, TOMPSETT G A, FOSTER A J, HAMMOND K D, AUERBACH S M, LOBO R F, HUBER G W. Investigation into the shape selectivity of zeolite catalysts for biomass conversion[J]. J Catal, 2011, 279(2):257-268. doi: 10.1016/j.jcat.2011.01.019
    [8]
    DU S C, GAMLIEL D P, VALLA J A, BOLLAS G M. The effect of ZSM-5 catalyst support in catalytic pyrolysis of biomass and compounds abundant in pyrolysis bio-oils[J]. J Anal Appl Pyrolysis, 2016, 122:7-12. doi: 10.1016/j.jaap.2016.11.002
    [9]
    LIU S Y, ZHANG Y N, FAN L L, ZHOU N, TIAN G Y, ZHU X D, CHENG Y L, WANG Y P, LIU Y H, CHEN P, RUAN R. Bio-oil production from sequential two-step catalytic fast microwave-assisted biomass pyrolysis[J]. Fuel, 2017, 196:261-268. doi: 10.1016/j.fuel.2017.01.116
    [10]
    PARK H J, PARK K H, JEON J K, KIM J, RYOO R, JEONG K E, PARK S H, PARK Y K. Production of phenolics and aromatics by pyrolysis of miscanthus[J]. Fuel, 2012, 97:379-384. doi: 10.1016/j.fuel.2012.01.075
    [11]
    TAARNING E, OSMUNDSEN C M, YANG X B, VOSS B, ANDERSEN S I, CHRISTENSEN C H. Zeolite-catalyzed biomass conversion to fuels and chemicals[J]. Energy Environ Sci, 2011, 4(3):793-804. doi: 10.1039/C004518G
    [12]
    GAYUBO A G, AGUAYO A T, ATUTXA A, AGUADO R, OLAZAR M, BILBAO J. Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite. II. Aldehydes, ketones, and acids[J]. Ind Eng Chem Res, 2004, 43(11):2619-2626. doi: 10.1021/ie030792g
    [13]
    AHO A, KUMAR N, ERÄNEN K, SALMI T, HUPA M, MURZIN D Y. Catalytic pyrolysis of woody biomass in a fluidized bed reactor:Influence of the zeolite structure[J]. Fuel, 2008, 87(12):2493-2501. doi: 10.1016/j.fuel.2008.02.015
    [14]
    LU Q, WANG Z, DONG C Q, ZHANG Z F, ZHANG Y, YANG Y P, ZHU X F. Selective fast pyrolysis of biomass impregnated with ZnCl2:Furfural production together with acetic acid and activated carbon as by-products[J]. J Anal Appl Pyrolysis, 2011, 91(1):273-279. doi: 10.1016/j.jaap.2011.03.002
    [15]
    李志合, 易维明, 高巧春, 李永军.生物质组分及温度对闪速热解挥发分的影响[J].燃料化学学报, 2005, 33(4):502-505. doi: 10.3969/j.issn.0253-2409.2005.04.025

    LI Zhi-he, YI Wei-ming, Gao Qiao-chun, Li Yong-jun. Effects of chem ical com ponents and tem perature on the volatility of biomass in flash pyrolysis[J]. J Fuel Chem Technol, 2005, 33(4):502-505. doi: 10.3969/j.issn.0253-2409.2005.04.025
    [16]
    宋春财, 胡浩权.秸秆及其主要组分的催化热解及动力学研究[J].煤炭转化, 2003, 26(3):91-97. doi: 10.3969/j.issn.1004-4248.2003.03.020

    SONG chun-cai, HU Hao-quan. Catalytic pyrolysis and kinetics of agricultural stalks and their main components[J]. Coal Convers, 2003, 26(3):91-97. doi: 10.3969/j.issn.1004-4248.2003.03.020
    [17]
    张智博.生物质快速催化热解制备高附加值化学品的研究[D].北京: 华北电力大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-11412-1016268862.htm

    ZHANG Zhi-bo. Research on catalytic fast pyrolysis of biomass to produce value-added chemicals[D]. Beijing: North China Electric Power University, 2016. http://cdmd.cnki.com.cn/Article/CDMD-11412-1016268862.htm
    [18]
    CHAI M Y, HE Y F, NISHU, LIU R H. Effect of fractional condensers on characteristics, compounds distribution and phenols selection of bio-oil from pine sawdust fast pyrolysis[J]. J Energy Inst, 2020, 93(2):811-821. doi: 10.1016/j.joei.2019.05.001
    [19]
    陈登宇, 朱锡锋.生物质热反应机理与活化能确定方法Ⅱ.热解段研究[J].燃料化学学报, 2011, 39(9):670-674. doi: 10.3969/j.issn.0253-2409.2011.09.006

    CHEN Deng-yu, ZHU Xi-feng. Thermal reaction mechanism of biomass and determination of activation energy II.Pyrolysis section[J]. J Fuel Chem Technol, 2011, 39(9):670-674. doi: 10.3969/j.issn.0253-2409.2011.09.006
    [20]
    GONG X M, WANG Z, DENG S, LI S G, SONG W L, LIN W G. Impact of the temperature, pressure, and particle size on tar composition from pyrolysis of three ranks of Chinese coals[J]. Energy Fuels, 2014, 28:4942-4948. doi: 10.1021/ef500986h
    [21]
    CARLSON T R, JAE J, LIN Y C, TOMPSETT G A, HUBER G W. Catalytic fast pyrolysis of glucose with HZSM-5:The combined homogeneous and heterogeneous reactions[J]. J Catal, 2010, 270(1):110-124. doi: 10.1016/j.jcat.2009.12.013
    [22]
    XU X, JIANG E C. "BTX" from guaiacol HDO under atmospheric pressure:Effect of support and carbon deposition[J]. Energy Fuels, 2017, 31(3):2855-2864. doi: 10.1021/acs.energyfuels.6b02700
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (168) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return