Volume 44 Issue 1
Jan.  2016
Turn off MathJax
Article Contents
Taher Yousefi Amiri, Jafarsadegh Moghaddas. Reaction parameters influence on the catalytic performance of copper-silica aerogel in the methanol steam reforming[J]. Journal of Fuel Chemistry and Technology, 2016, 44(1): 84-90.
Citation: Taher Yousefi Amiri, Jafarsadegh Moghaddas. Reaction parameters influence on the catalytic performance of copper-silica aerogel in the methanol steam reforming[J]. Journal of Fuel Chemistry and Technology, 2016, 44(1): 84-90.

Reaction parameters influence on the catalytic performance of copper-silica aerogel in the methanol steam reforming

More Information
  • Corresponding author: Jafarsadegh Moghaddas, Tel: 0098-4133459155, Fax: 0098-4133444355, E-mail: jafar.moghaddas@sut.ac.ir
  • Received Date: 2015-08-08
  • Rev Recd Date: 2015-11-23
  • Available Online: 2022-03-23
  • Publish Date: 2016-01-01
  • Steam reforming of methanol was carried out on the copper-silica aerogel catalyst. The effects of reaction temperature, feed rate, water to methanol molar ratio and carrier gas flow rate on the H2 production rate and CO selectivity were investigated. Methanol conversion was increased considerably in the range of about 240-300, after which it increased at a slightly lower rate. The used feed flow rate, steam to methanol molar ratio and carrier gas flow were 1.2-9.0 mL/h, 1.2-5.0 and 20-80 mL/min, respectively. Reducing the feed flow rate increased the H2 production rate. It was found that an increase in the water to methanol ratio and decreasing the carrier gas flow rate slightly increases the H2 production rate. Increasing the water to methanol ratio causes the lowest temperature in which CO formation was observed to rise, so that for the ratio of 5.0 no CO formation was detected in temperatures lower than 375 ℃. In all conditions, by approaching the complete conversion, increasing the main product concentration, increasing the temperature and contact time, and decreasing the steam to methanol ratio, the CO selectivity was increased. These results suggested that CO was formed as a secondary product through reverse water-gas shift reaction and did not participate in the methanol steam reforming reaction mechanism.
  • loading
  • [1]
    JONES S D, HAGELIN-WEAVER H E. Steam reforming of methanol over CeO2-and ZrO2-promoted Cu-ZnO catalysts supported on nanoparticle Al2O3[J]. Appl Catal A: Gen, 2009, 90(1/2): 195-204.
    [2]
    FRANK B, JENTOFT F C, SOERIJANTO H, KRöHNERT J, SCHLÖGL R, SCHOMÖCKER R. Steam reforming of methanol over copper-containing catalysts: Influence of support material on microkinetics[J]. J Catal, 2007, 246(1): 177-192. doi: 10.1016/j.jcat.2006.11.031
    [3]
    AGRELL J, BIRGERSSON H, BOUTONNET M. Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst: A kinetic analysis and strategies for suppression of CO formation[J]. J Power Sources, 2002, 106(1/2): 249-257.
    [4]
    SA S, SOUSA J M, MENDES A L. Steam reforming of methanol over a CuO/ZnO/Al2O3 catalyst part Ⅱ: A carbon membrane reactor[J]. Chem Eng Sci, 2011, 66(22): 5523-5530. doi: 10.1016/j.ces.2011.06.074
    [5]
    CLANCY P, BREEN J P, ROSS J R H. The preparation and properties of coprecipitated Cu-Zr-Y and Cu-Zr-La catalysts used for the steam reforming of methanol[J]. Catal Today, 2007, 127(1/4): 291-294. https://www.researchgate.net/publication/244321669_The_preparation_and_properties_of_coprecipitated_Cu-Zr-Y_and_Cu-Zr-La_catalysts_used_for_the_steam_reforming_of_methanol
    [6]
    PURNAMAA H, GIRGSDIES F, RESSLER T, SCHATTKA J H, CARUSO R A, SCHOMACKERC R, SCHLÖGL R. Activity and selectivity of a nanostructured CuO/ZrO2 catalyst in the steam reforming of methanol[J]. Catal Lett, 2004, 94(1): 61-68. doi: 10.1023%2FB%3ACATL.0000019332.80287.6b
    [7]
    MONYANON S, LUENGNARUEMITCHAI A, PONGSTABODEE S. Optimization of methanol steam reforming over a Au/CuO-CeO2 catalyst by statistically designed experiments[J]. Fuel Process Technol, 2012, 96: 160-168. doi: 10.1016/j.fuproc.2011.12.024
    [8]
    TURCO M, CAMMARANO C, BAGNASCO G, MORETTI E, STORARO L, TALON A, LENARDA M. Oxidative methanol steam reforming on a highly dispersed CuO/CeO2/Al2O3 catalyst prepared by a single-step method[J]. Appl Catal B: Environ, 2009, 91(1/2): 101-107.
    [9]
    SZIZYBALSKI A, GIRGSDIES F, RABIS A, WANG Y, NIEDERBERGER M, RESSLER T. In situ investigations of structure-activity relationships of a Cu/ZrO2 catalyst for the steam reforming of methanol[J]. J Catal, 2005, 233(2): 297-307. doi: 10.1016/j.jcat.2005.04.024
    [10]
    LINDSTRRÖM B, PETTERSSON L J, MENON P G. Activity and characterization of Cu/Zn, Cu/Cr and Cu/Zr on alumina for methanol reforming for fuel cell vehicles[J]. Appl Catal A: Gen, 2002, 234(1/2): 111-125. https://www.researchgate.net/publication/222134899_Activity_and_characterization_of_CuZn_CuCr_and_CuZr_on_-alumina_for_methanol_reforming_for_fuel_cell_vehicles
    [11]
    CONANT T, KARIM A M, LEBARBIER V, WANG Y, GIRGSDIES F, SCHLOGL R, DATYE A. Stability of bimetallic Pd-Zn catalysts for the steam reforming of methanol[J]. J Catal, 2008, 257(1): 64-70. doi: 10.1016/j.jcat.2008.04.018
    [12]
    CHIN Y H, DAGLE R, HU J, DOHNALKOVA A C, WANG Y. Steam reforming of methanol over highly active Pd/ZnO catalyst[J]. Catal Today, 2002, 77(1/2): 79-88. http://www.sciencedirect.com/science/article/pii/S0920586102002341
    [13]
    TAKEZAWA N, IWASA N. Steam reforming and dehydrogenation of methanol: Difference in the catalytic functions of copper and group VIII metals[J]. Catal Today, 1997, 36(1): 45-56. doi: 10.1016/S0920-5861(96)00195-2
    [14]
    UDANI P P C, GUNAWARDANA P V D S, LEE H C, KIM D H. Steam reforming and oxidative steam reforming of methanol over CuO-CeO2 catalysts[J]. Int J Hydrogen Energy, 2009, 34(18): 7648-7655. doi: 10.1016/j.ijhydene.2009.07.035
    [15]
    MATSUMURA Y, ISHIBE H. High temperature steam reforming of methanol over Cu/ZnO/ZrO2 catalysts[J]. Appl Catal B: Environ, 2009, 91(1/2): 524-532. https://www.researchgate.net/publication/223168970_High_temperature_steam_reforming_of_methanol_over_CuZnOZrO2_catalysts
    [16]
    TAKEZAWA N, KOBAYASHI H, HIROSE A, SHIMOKAWABE M, TAKAHASHI K. Steam reforming of methanol on copper-silica catalysts; effect of copper loading and calcination temperature on the reaction[J]. Appl Catal, 1982, 4(2): 127-134. doi: 10.1016/0166-9834(82)80243-1
    [17]
    MATSUMURA Y, ISHIBE H. Selective steam reforming of methanol over silica-supported copper catalyst prepared by sol-gel method[J]. Appl Catal B: Environ, 2009, 86(3/4): 114-120. https://www.deepdyve.com/lp/elsevier/selective-steam-reforming-of-methanol-over-silica-supported-copper-Fns7ZTrGil
    [18]
    TAKAHASHI K, TAKEZAWA N, KOBAYASHI H. The mechanism of steam reforming of methanol over a copper-silica catalyst[J]. Appl Catal, 1982, 2(6): 363-366. doi: 10.1016/0166-9834(82)80154-1
    [19]
    DUNN B C, COLE P, COVINGTON D, WEBSTER M C, PUGMIRE R J, ERNST R D, EYRING E M, SHAH N, HUFFMAN G P. Silica aerogel supported catalysts for Fischer-Tropsch synthesis[J]. Appl Catal A: Gen, 2005, 278(2): 233-238. doi: 10.1016/j.apcata.2004.10.002
    [20]
    DOMINGUEZ M, TABOADA E, MOLINS E, LLORCA J. Co-SiO2 aerogel-coated catalytic walls for the generation of hydrogen[J]. Catal Today, 2008, 138(3/4): 193-197. http://www.sciencedirect.com/science/article/pii/S0920586108002617
    [21]
    YOUSEFI AMIRI T, MOGHADDAS J S. Cogeled copper-silica aerogel as a catalyst in hydrogen production from methanol steam reforming[J]. Int J Hydrogen Energy, 2015, 40(3): 1472-1480. doi: 10.1016/j.ijhydene.2014.11.104
    [22]
    PARK G G, SEO D J, PARK S H, YOON Y G, KIM C S, YOON W L. Development of microchannel methanol steam reformer[J]. Chem Eng Sci, 2004, 101(1/3): 87-92. https://www.researchgate.net/publication/223004910_Development_of_microchannel_methanol_steam_reformer
    [23]
    DU X, SHEN Y, YANG L, SHI Y, YANG Y. Experiments on hydrogen production from methanol steam reforming in the microchannel reactor[J]. Int J Hydrogen Energy, 2002, 37(17): 12271-12280. https://www.researchgate.net/publication/257175072_Experiments_on_hydrogen_production_from_methanol_steam_reforming_in_the_microchannel_reactor
    [24]
    LIN S S Y, THOMSON W J, HAGENSEN T J, HA S Y. Steam reforming of methanol using supported Mo2C catalysts[J]. Appl Catal A: Gen, 2007, 318: 121-127. doi: 10.1016/j.apcata.2006.10.054
    [25]
    MATSUMURA Y, ISHIBE H. Effect of zirconium oxide added to Cu/ZnO catalyst for steam reforming of methanol to hydrogen[J]. J Mol Catal A: Chem, 2011, 345(1/2): 44-53. http://www.sciencedirect.com/science/article/pii/S1381116911002147
    [26]
    JEONG H, KIM K I, KIM T H, KO C H, PARK H C, SONG I K. Hydrogen production by steam reforming of methanol in a micro-channel reactor coated with Cu/ZnO/ZrO2/Al2O3 catalyst[J]. J Power Sources, 2006, 159(2): 1296-1299. doi: 10.1016/j.jpowsour.2005.11.095
    [27]
    MATSUMURA Y, ISHIBE H. Suppression of CO by-production in steam reforming of methanol by addition of zinc oxide to silica-supported copper catalyst[J]. J Catal, 2009, 268(2): 282-289. doi: 10.1016/j.jcat.2009.09.026
    [28]
    HUANG G, LIAW B J, JHANG C J, CHEN Y Z. Steam reforming of methanol over CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts[J]. Appl Catal A: Gen, 2009, 358(1): 7-12. doi: 10.1016/j.apcata.2009.01.031
    [29]
    PURNAMA H, RESSLER T, JENTOFT R E, SOERIJANTO H, SCHLÖGL R, SCHOMÄCKER R. CO formation/selectivity for steam reforming of methanol with a commercial CuO/ZnO/Al2O3 catalyst[J]. Appl Catal A: Gen, 2004, 259(1): 83-94. doi: 10.1016/j.apcata.2003.09.013
    [30]
    SHISHIDO T, YAMAMOTO Y, MORIOKA H, TAKAKI K, TAKEHIRA K. Active Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation method in steam reforming of methanol[J]. Appl Catal A: Gen, 2004, 263(2): 249-253. doi: 10.1016/j.apcata.2003.12.018
    [31]
    TAKAHASHI K, KOBAYASHI H, TAKEZAWA N. On the difference in reaction pathways of steam reforming of methanol over copper-silica and platinum catalysts[J]. Chem Lett, 1982, 14(6): 759-762. doi: 10.1246/cl.1985.759
    [32]
    BASILE A, PARMALIANA A, TOSTI S, IULIANELLI A, GALLUCCI F, ESPRO C, SPOOREN J. Hydrogen production by methanol steam reforming carried out in membrane reactor on Cu/Zn/Mg-based catalyst[J]. Catal Today, 2008, 137(1): 17-22. doi: 10.1016/j.cattod.2008.03.015
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (52) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return