Volume 44 Issue 6
Jun.  2016
Turn off MathJax
Article Contents
HUANG Yu-hui, REN Guo-qing, SUN Jiao, WANG Chong-qing, CHEN Xiao-rong, MEI Hua. Effect of precipitant on the performance of CuZnAl catalysts in the gas phase selective hydrogenation of furfural to furfuryl alcohol[J]. Journal of Fuel Chemistry and Technology, 2016, 44(6): 726-731.
Citation: HUANG Yu-hui, REN Guo-qing, SUN Jiao, WANG Chong-qing, CHEN Xiao-rong, MEI Hua. Effect of precipitant on the performance of CuZnAl catalysts in the gas phase selective hydrogenation of furfural to furfuryl alcohol[J]. Journal of Fuel Chemistry and Technology, 2016, 44(6): 726-731.

Effect of precipitant on the performance of CuZnAl catalysts in the gas phase selective hydrogenation of furfural to furfuryl alcohol

More Information
  • Corresponding author: Tel: 025-83172254, E-mail: cqw@njtech.edu.cn
  • Received Date: 2016-02-26
  • Rev Recd Date: 2016-03-31
  • Available Online: 2021-01-23
  • Publish Date: 2016-06-10
  • The catalysts of CuZnAl-1, CuZnAl-2 and CuZnAl-3 were prepared by the co-precipitation method using NaOH, Na2CO3 and Na2CO3/NaOH, respectively, as the precipitant. They were characterized by X-ray diffraction (XRD), N2 adsorption-desorption, H2-temperature programmed reduction (H2-TPR), TGA, and NH3-temperature programmed desorption (NH3-TPD); the effect of precipitant on the performance of CuZnAl catalysts in the gas phase selective hydrogenation of furfural to furfuryl alcohol was then investigated in a fixed bed reactor. The results illustrate that all three catalysts exhibit high furfural conversion, whereas the CuZnAl-3 catalyst gives the highest selectivity to furfuryl alcohol. The precipitant has a great impact on the phase structure, surface area, acidity and redox property of the resultant CuZnAl catalysts. The CuZnAl-3 catalyst prepared with Na2CO3/NaOH precipitant exhibits proper specific surface area, CuO crystalline phase, weak acid sites and easily reducible CuO on the catalyst surface, which are conducive to produce furfuryl alcohol for the hydrogenation of furfural. Under the optimizing reaction condition, viz., atmospheric pressure, 180℃, hydrogen to furfural molar ratio of 5 and furfural volume space velocity of 0.3h-1, the conversion of furfural over the CuZnAl-3 catalyst reaches 99.4%, with a selectivity of 98.3% to furfuryl alcohol.
  • loading
  • [1]
    YAN K, WU G, LAFLEUR T, JARVIS C. Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemical[J]. Renew Sust Energ Rev, 2014, 38(5):663-676. https://www.researchgate.net/publication/264161427_Production_properties_and_catalytic_hydrogenation_of_furfural_to_fuel_additives_and_value-added_chemicals
    [2]
    WEINGARTEN R, TOMPSETT G A, CONNER W C, HUBER G W. Design of solid acid catalysts for aqueous-phase dehydration of carbohydrates:The role of Lewis and Brφnsted acid sites[J]. J Catal, 2011, 279(1):174-182. doi: 10.1016/j.jcat.2011.01.013
    [3]
    MANDALIK A, LI Q, SATO T K, RUNGE T. Integrated biorefinery model based on production of furans using open-ended high yield processes[J]. Green Chem, 2014, 16(5):2480-2489. doi: 10.1039/C3GC42424C
    [4]
    BARR J B, WALLON S B. The chemistry of furfuryl alcohol resins[J]. J Appl Polym Sci, 1971, 15(5):1079-1090. doi: 10.1002/app.1971.070150504
    [5]
    SRIVASTAVA S, SOLANKI N, MOHANTY P, SHAH K A, PARIKH J K, DALAI A K. Optimization and kinetic studies on hydrogenation of furfural to furfuryl alcohol over SBA-15 supported bimetallic copper-cobalt catalyst[J]. Catal Lett, 2015, 145(3):816-823. doi: 10.1007/s10562-015-1488-5
    [6]
    VILLAVERDE M M, GARETTO T F, MARCHI A J. Liquid-phase transfer hydrogenation of furfural to furfuryl alcohol on Cu-Mg-Al catalysts[J]. Catal Commun, 2015, 58:6-10. doi: 10.1016/j.catcom.2014.08.021
    [7]
    张定国, 刘芬, 李发亮, 杨婥.糠醛加氢制糠醇中Cu-Zn/γ-Al2O3催化剂的改性研究[J].化学反应工程与工艺, 2007, 23(2):136-140.

    ZHANG Ding-guo, LIU Fen, LI Fa-liang, YANG Chuo. Study on modification of Cu-Zn/γ-Al2O3 catalysts of hydrogenation of furfural to furfuryl alcohol[J]. Chem React Eng Technol, 2007, 23(2):136-140.
    [8]
    郑洪岩, 朱玉雷, 黄龙, 相宏伟, 李永旺. Cu-Mn-Si催化剂在环己醇脱氢和糠醛加氢耦合反应中的研究:沉淀pH值和焙烧温度的影响[J].燃料化学学报, 2008, 36(5):631-636. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17313.shtml

    ZHENG Hong-yan, ZHU Yu-lei, HUANG Long, XIANG Hong-wei, LI Yong-wang. Study on Cu-Mn-Si catalysts for the coupling process of cyclohexanol dehydrogenation and furfural hydrogenation:Effect of pH value and calcination temperature[J]. J Fuel Chem Technol, 2008, 36(5):631-636. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17313.shtml
    [9]
    LIAW B J, CHIANG S J, CHEN S W, CHEN Y Z. Preparation and catalysis of amorphous CoNiB and polymer-stabilized CoNiB catalysts for hydrogenation of unsaturated aldehydes[J]. Appl Catal A:Gen, 2008, 346(1/2):179-188. http://www.sciencedirect.com/science/article/pii/S0926860X08003360
    [10]
    YANG J, ZHENG H Y, ZHU Y L, ZHAO G W, ZHANG C H, TENG B T. Effects of calcination temperature on performance of Cu-Zn-Al catalyst for synthesizing γ-butyrolactone and 2-methylfuran through the coupling of dehydrogenation and hydrogenation[J]. Catal Commun, 2004, 5(9):505-510. doi: 10.1016/j.catcom.2004.06.005
    [11]
    NAKAGAWA Y, TAMURA M, TOMISHIGE K. Catalytic reduction of biomass-derived furanic compounds with hydrogen[J]. Acs Catal, 2013, 3(12):2655-2668. doi: 10.1021/cs400616p
    [12]
    BEHRENS M, BRENNECKE D, GIRGSDIES F. Understanding the complexity of a catalyst synthesis:Co-precipitation of mixed Cu, Zn, Al hydroxycarbonate precursors for Cu/ZnO/Al2O3 catalysts investigated by titration experiments[J]. Appl Catal A:Gen, 2011, 392(1):93-102. http://www.academia.edu/10692421/Understanding_the_complexity_of_a_catalyst_synthesis_Co-precipitation_of_mixed_Cu_Zn_Al_hydroxycarbonate_precursors_for_Cu_ZnO_Al_sub_2_sub_O_sub_3_sub_catalysts_investigated_by_titration_experiments
    [13]
    DONG F, ZHU Y L, ZHENG H Y, ZHU Y F, LI X, LI Y Q. Cr-free Cu-catalysts for the selective hydrogenation of biomass-derived furfural to 2-methylfuran:The synergistic effect of metal and acid sites[J]. J Mol Catal A, 2015, 398:140-148. doi: 10.1016/j.molcata.2014.12.001
    [14]
    YING T, YE L, PING Z, XUE Q, LI C, YONG L. High-performance HTLcs-derived CuZnAl catalysts for hydrogen production via methanol steam reforming[J]. AIChE J, 2009, 55(55):1217-1228. https://www.researchgate.net/publication/229741126_High-Performance_HTLcs-Derived_CuZnAl_Catalysts_for_Hydrogen_Production_via_Methanol_Steam_Reforming
    [15]
    GUO J H, XU G, HAN Z, ZHANG Y, FU Y, GUO Q X. Selective conversion of furfural to cyclopentanone with cuznal catalysts[J]. ACS Sust Chem Eng, 2014, 2(10):2259-2266. doi: 10.1021/sc5003566
    [16]
    BORTS M S, GILCHENOK N D, GUREVICH G S, IGNATEV V M. Kinetics of vapor-phase hydrogenation of furfural on a copper-chromium catalyst[J]. J Appl Chem (USSR), 1986, 59(1):114-117.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (105) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return