Volume 44 Issue 3
Mar.  2016
Turn off MathJax
Article Contents
LIU Zhao-xian, GUO Ai-jun, CHEN Kun, WANG Zong-xian, CHU Jun, CHEN Jian-tao. Changes in chemical structure and solvation of heavy oil components during thermal upgrading of a vacuum residue[J]. Journal of Fuel Chemistry and Technology, 2016, 44(3): 366-374.
Citation: LIU Zhao-xian, GUO Ai-jun, CHEN Kun, WANG Zong-xian, CHU Jun, CHEN Jian-tao. Changes in chemical structure and solvation of heavy oil components during thermal upgrading of a vacuum residue[J]. Journal of Fuel Chemistry and Technology, 2016, 44(3): 366-374.

Changes in chemical structure and solvation of heavy oil components during thermal upgrading of a vacuum residue

Funds:

National Natural Science Foundation of China U1362101

the Fundamental Research Funds for the Central Universities 14CX02120A

the Provincial Natural Science Foundation of Shandong ZR2014BQ030

the Application Research of Independent Innovation Foundation of Qingdao 15-9-1-77-jch

and the China National Petroleum Corporation (CNPC) Grant on Research and Development for Commercial Application of Novel Technologies in Processing Inferior Heavy Oil PRIKY15002

and the China National Petroleum Corporation (CNPC) Grant on Research and Development for Commercial Application of Novel Technologies in Processing Inferior Heavy Oil PRIKY15008

and the China National Petroleum Corporation (CNPC) Grant on Research and Development for Commercial Application of Novel Technologies in Processing Inferior Heavy Oil PRIKY15009

  • Received Date: 2015-10-12
  • Rev Recd Date: 2016-01-08
  • Available Online: 2021-01-23
  • Publish Date: 2016-03-30
  • The Venezuelan vacuum residue was used as a feedstock for thermal upgrading experiments to investigate the changes in chemical structure and composition and the solvation interaction of heavy oil components in a micro-batch reactor at 410℃ with an initial pressure of nitrogen 2.0MPa. The 1H-nuclear magnetic resonance measurement was applied to analyze the reaction pathway of hydrogen atoms with different chemical shift of the heavy oil components. The average molecular structural parameters of asphaltenes and heavy resins in the oil produced by thermal upgrading of the feedstock were calculated and analyzed by the modified Brown-Lander methods. The vapor pressure osmometry was used to determine the average molecular weights of supramolecular structures formed by asphaltenes and heavy resins in toluene. The results show that both H/C atomic ratio and hydrogen donating ability of asphaltenes and heavy resins decrease with reaction time, and the conjugate degree of aromatic ring system and fA become greater clearly after 45min. The aggregation of asphaltenes rises slowly and increases sharply after 15 min, while there is a slight change of aggregation for the heavy resins during the whole reaction time, and the differences in aggregation correlation values between asphaltenes and heavy resins are increased by 1.5% at 15min, 50.8% at 25min, and 142.3% at 45min, respectively. The solvation interaction of heavy resins with asphaltenes weakens with time, and the solvation parameters decrease from 32.9% at the beginning to 29.5% at 15min, 14.1% at 25min, and 9.6% at 45min, respectively. The changes may contribute to the dropping of thermal colloidal stability of resins and the increasing of spot ratings.
  • loading
  • [1]
    姚国欣.委内瑞拉超重原油和加拿大油砂沥青加工现状及发展前景[J].中外能源, 2012, 17(1): 3-22. http://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201201003.htm

    YAO Guo-xin. Current status and development prospects for processing of Venezuelan extra-heavy crude and Canadian oil sand bitumen[J]. Sino-Global Energy, 2012, 17(1): 3-22. http://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201201003.htm
    [2]
    LI S H, LIU C G, QUE G H, LIANG W J, ZHU Y J. Colloidal structures of three Chinese petroleum vacuum residues[J]. Fuel, 1996, 75(8): 1025-1029. doi: 10.1016/0016-2361(95)00315-0
    [3]
    ZHAO B, SHAW J M. Composition and size distribution of coherent nanostructures in Athabasca bitumen and Maya crude oil[J]. Energy Fuels, 2007, 21(5): 2795-2804. doi: 10.1021/ef070119u
    [4]
    INDO K, RATULOWSKI J, DINDORUK B, GAO J L, ZUO J L, MULLINS O C. Asphaltene nanoaggregates measured in a live crude oil by centrifugation[J]. Energy Fuels, 2009, 23(9): 4460-4469. doi: 10.1021/ef900369r
    [5]
    CHANG C L, FOGLER H S. Stabilization of asphaltenes in aliphatic solvents using alkylbenzene-derived amphiphiles. 2. Study of the asphaltene-amphiphile interactions and structures using fourier transform infrared spectroscopy and small-angle x-ray scattering techniques[J]. Langmuir, 1994, 10(6): 1758-1766. doi: 10.1021/la00018a023
    [6]
    GONZÁLEZ G, NEVES G B M, SARAIVA S M, LUCAS E F, SOUSA M D A D. Electrokinetic characterization of asphaltenes and the asphaltenes-resins interaction[J]. Energy Fuels, 2003, 17(4): 879-886. doi: 10.1021/ef020249x
    [7]
    LEÓN O, CONTRERAS E, ROGEL E, DAMBAKLI G, ESPIDEL J, ACEVEDO S. The influence of the adsorption of amphiphiles and resins in controlling asphaltene flocculation[J]. Energy Fuels, 2001, 15(5): 1028-1032. doi: 10.1021/ef010032n
    [8]
    LEÓN O, CONTRERAS E, ROGEL E, DAMBAKLI G, ACEVEDO S, CARBOGNANI L, ESPIDEL J. Adsorption of native resins on asphaltene particles: A correlation between adsorption and activity[J]. Langmuir, 2002, 18(13): 5106-5112. doi: 10.1021/la011394q
    [9]
    DANIEL M G, ANDERSEN S I. Thermodynamic characterization of asphaltene-resin interaction by microcalorimetry[J]. Langmuir, 2004, 20(11): 4559-4565. doi: 10.1021/la0499315
    [10]
    SOORGHALI F, ZOLGHADR A, AYATOLLAHI S. Effects of native and non-native resins on asphaltene deposition and the change of surface topography at different pressures: An experimental investigation[J]. Energy Fuels, 2015, 29(9): 5487-5494. doi: 10.1021/acs.energyfuels.5b00366
    [11]
    王齐, 郭磊, 王宗贤, 沐宝泉, 郭爱军, 刘贺.委内瑞拉减压渣油供氢热转化基础研究[J].燃料化学学报, 2012, 40(11): 1317-1322. doi: 10.1016/S1872-5813(13)60001-8

    WANG Qi, GUO Lei, WANG Zong-xian, MU Bao-quan, GUO Ai-jun, LIU He. Hydrogen donor visbreaking of Venezuelan vacuum residue[J]. J Fuel Chem Technol, 2012, 40(11): 1317-1322. doi: 10.1016/S1872-5813(13)60001-8
    [12]
    GOULD K A, WIEHE I A. Natural hydrogen donors in petroleum resids[J]. Energy Fuels, 2006, 21(3): 1199-1204.
    [13]
    WANG Z X, JI S F, LIU H, CHEN K, GUO A J. Hydrogen transfer of petroleum residue subfractions during thermal processing under hydrogen[J]. Energy Technol, 2015, 3(3): 259-264. doi: 10.1002/ente.201402190
    [14]
    GUO A J, WANG Z Q, ZHANG H J, ZHANG X J, WANG Z X. Hydrogen transfer and coking propensity of petroleum residues under thermal processing[J]. Energy Fuels, 2010, 24(5): 3093-3100. doi: 10.1021/ef100172r
    [15]
    BROWN J K, LADNER W R. A study of the hydrogen distribution in coal-like materials by high-resolution nuclear magnetic resonance spectroscopy Ⅱ. A comparison with infra-red measurement and the conversion to carbon structure[J]. Fuel, 1960, 39: 87-96.
    [16]
    刘贺, 陈坤, 王宗贤, 郭爱军. 1H-NMR评价不同重油缓和热转化过程中的相对供氢能力[J].燃料化学学报, 2013, 41(10): 1191-1198. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18273.shtml

    LIU He, CHEN Kun, WANG Zong-xian, GUO Ai-jun. Evaluation of relative hydrogen-donating abilities of different heavy oils during mild thermal conversion by 1H-NMR[J]. J Fuel Chem Technol, 2013, 41(10): 1191-1198. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18273.shtml
    [17]
    DICKIE J P, YEN T F. Macrostructures of asphaltic fractions by various instrumental methods[J]. Anal Chem, 1967, 39(14): 1847-1852. doi: 10.1021/ac50157a057
    [18]
    李传, 王继乾, 隋李涛, 崔敏, 邓文安.委内瑞拉稠油沥青质的XPS研究[J].石油学报:石油加工, 2013, 29(3): 459-463. http://www.cnki.com.cn/Article/CJFDTOTAL-SXJG201303017.htm

    LI Chuan, WANG Ji-qian, SUI Li-tao, CUI Min, DENG Wen-an. Study on XPS of Venezuela heavy oil asphaltene[J]. Acta Pet Sin (Pet Proc Sect), 2013, 29(3): 459-463. http://www.cnki.com.cn/Article/CJFDTOTAL-SXJG201303017.htm
    [19]
    王治卿.渣油热反应体系胶体化学与氢转移行为研究[D].青岛:中国石油大学(华东), 2006.

    WANG Zhi-qing. Research on the colloidal stability and hydrogen-transfer of vacuum residue during thermal conversion[D]. Qingdao: China University of Petroleum, 2006.
    [20]
    SEDGHI M, GOUAL L, WELCH W, KUBELKA J. Effect of asphaltene structure on association and aggregation using molecular dynamics[J]. J Phys Chem B, 2013, 117(18): 5765-5776. doi: 10.1021/jp401584u
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (110) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return