Volume 48 Issue 9
Sep.  2020
Turn off MathJax
Article Contents
JIAO Tong, XU Xue-lian, ZHANG Lei, WENG You-yun, WENG Yu-bing, GAO Zhi-xian. Research on CuO/CeO2-ZrO2/SiC monolithic catalysts for hydrogen production from steam reforming of methanol[J]. Journal of Fuel Chemistry and Technology, 2020, 48(9): 1122-1130.
Citation: JIAO Tong, XU Xue-lian, ZHANG Lei, WENG You-yun, WENG Yu-bing, GAO Zhi-xian. Research on CuO/CeO2-ZrO2/SiC monolithic catalysts for hydrogen production from steam reforming of methanol[J]. Journal of Fuel Chemistry and Technology, 2020, 48(9): 1122-1130.

Research on CuO/CeO2-ZrO2/SiC monolithic catalysts for hydrogen production from steam reforming of methanol

Funds:

the National Natural Science Foundation of China 21673270

More Information
  • Corresponding author: ZHANG Lei, E-mail:lnpuzhanglei@163.com
  • Received Date: 2020-08-11
  • Rev Recd Date: 2020-09-09
  • Available Online: 2021-01-23
  • Publish Date: 2020-09-10
  • CuO/CeO2-ZrO2/SiC monolithic catalysts were prepared by the sol-gel and incipient-wetness impregnation methods, and then used in methanol steam reforming reaction for H2 production. The results indicated that CuO/CeO2-ZrO2/SiC monolithic catalysts showed better activity, higher hydrogen production rate and less CO volume fraction than the CuO/CeO2-ZrO2 bead catalysts. Then the effects of CuO content and coating amount on methanol steam reforming were explored. When the CeO2-ZrO2 mass content was 15%±1% and CuO was 5%±1%, the obtained catalyst showed the best catalytic activity. At a reaction temperature of 340 ℃, water and methanol molar ratio of 1.2, methanol and water gas hourly space velocity of 4840 h-1, methanol conversion reached 86.0%, hydrogen production rate was 1490.0 L/(m3·s), and CO content in reformed gas was 1.55%. The effects of gas hourly space velocity, water and methanol molar ratio and temperature on methanol steam reforming reaction activity were studied by the single factor experiments. The results showed that, as the gas hourly space velocity increased, methanol conversion decreased, hydrogen production rate increased, and the volume fraction of CO in the reformed gas decreased. As the molar ratio of water to methanol increased, both the methanol conversion and the hydrogen production rate increased first and then declined, and the volume fraction of CO in the reformed gas decreased. With the increase of reaction temperature, methanol conversion rate, hydrogen production rate and the content of CO in the reformed gas increased.
  • loading
  • [1]
    HE J P, YANG Z X, ZHANG L, LI Y, PAN L W. Cu supported on ZnAl-LDHs precursor prepared by in-situ synthesis method on γ-Al2O3 as catalytic material with high catalytic activity for methanol steam reforming[J]. Int J Hydrogen Energy, 2017, 42(15):9930-9937. doi: 10.1016/j.ijhydene.2017.01.229
    [2]
    MEI D, FENG Y, QIAN M, CHEN Z Q. An innovative micro-channel catalyst support with a micro-porous surface for hydrogen production via methanol steam reforming[J]. Int J Hydrogen Energy, 2016, 41(4):2268-2277. doi: 10.1016/j.ijhydene.2015.12.044
    [3]
    MA Y F, GUAN G Q, PHANTHONG P, LI X M, GAO J, HAO X G, WANG Z D, ABUDULA A. Steam reforming of methanol for hydrogen production over nanostructured wire-like molybdenum carbide catalyst[J]. Int J Hydrogen Energy, 2014, 39(33):18803-18811. doi: 10.1016/j.ijhydene.2014.09.062
    [4]
    刘玉娟, 王东哲, 张磊, 王宏浩, 陈琳, 刘道胜, 韩蛟, 张财顺.载体焙烧气氛对甲醇水蒸气重整制氢CuO/CeO2催化剂的影响[J].燃料化学学报, 2018, 46(8):992-999. http://www.ccspublishing.org.cn/article/id/a6e5d5bf-0e5d-4327-b0f9-f6cde8e4ef32

    LIU Yu-juan, WANG Dong-zhe, ZHANG Lei, WANG Hong-hao, CHEN Lin, LIU Dao-sheng, HAN Jiao, ZHANG Cai-shun. Effect of support calcination atmospheres on the activity of CuO/CeO2 catalysts for methanol steam reforming[J]. J Fuel Chem Technol, 2018, 46(8):992-999. http://www.ccspublishing.org.cn/article/id/a6e5d5bf-0e5d-4327-b0f9-f6cde8e4ef32
    [5]
    王东哲, 冯旭, 张健, 陈琳, 张磊, 王宏浩, 白金, 张财顺, 张政一.助剂M(M=Cr, Zn, Y, La)对甲醇水蒸气重整制氢CuO/CeO2催化剂的影响[J].燃料化学学报, 2019, 47(10):1251-1257. http://www.ccspublishing.org.cn/article/id/fc3872f1-7c21-4624-8959-0eb51860b79b

    WANG Dong-zhe, FENG Xu, ZHANG Jian, CHEN Lin, ZHANG Lei, WANG Hong-hao, BAI Jin, ZHANG Cai-shun, ZHANG Zheng-yi. Effect of promoter M (M=Cr, Zn, Y, La) on CuO/CeO2 catalysts for hydrogen production from steam reforming of methanol[J]. J Fuel Chem and Technol, 2019, 47(10):1251-1257. http://www.ccspublishing.org.cn/article/id/fc3872f1-7c21-4624-8959-0eb51860b79b
    [6]
    YANG S Q, ZHOU F, LIU Y J, ZHANG L, CHEN Y, WANG H H, TIAN Y, ZHANG C S, LIU D S. Morphology effect of ceria on the performance of CuO/CeO2 catalysts for hydrogen production by methanol steam reforming[J]. Int J Hydrogen Energy, 2019, 44(14):7252-7261. doi: 10.1016/j.ijhydene.2019.01.254
    [7]
    JIANG C J, TRIMM D L, WAINWRIGHT M S. Kinetic study of steam reforming of methanol over copper-based catalysts[J]. Appl Catal A:Gen, 1993, 93(2):245-255. doi: 10.1016/0926-860X(93)85197-W
    [8]
    JIANG C J, TRIMM D L, WAINWRIGHT M S. Kinetic mechanism for the reaction between methanol and water over a Cu/ZnO/Al2O3 catalyst[J]. Appl Catal A:Gen, 1993, 97(2):145-158. doi: 10.1016/0926-860X(93)80081-Z
    [9]
    AMPHLETT J C, CREBER K A M, DAVIS J M, MANN R F, PEPPLEY B A, STOKES D M. Hydrogen production by steam reforming of methanol for polymer electrolyte fuel cells[J]. Int J Hydrogen Energy, 1994, 19(2):131-137. doi: 10.1016/0360-3199(94)90117-1
    [10]
    LIU N, YUAN Z S, WANG S D, ZHANG C X, WANG S J, LI D Y. Characterization and performance of a ZnO-ZnCr2O4/CeO2-ZrO2 monolithic catalyst for methanol auto-thermal reforming process[J]. Int J Hydrogen Energy, 2008, 33(6):1643-1651. doi: 10.1016/j.ijhydene.2007.12.058
    [11]
    DANWITTAYAKUL S, DUTTA J. Zinc oxide nanorods based catalysts for hydrogen production by steam reforming of methanol[J]. Int J Hydrogen Energy, 2012, 37(7):5518-5526. doi: 10.1016/j.ijhydene.2011.12.161
    [12]
    TAHAY P, KHANI Y, JABARI M, BAHADORAN F, SAFARI N. Highly porous monolith/TiO2 supported Cu, Cu-Ni, Ru, and Pt catalysts in methanol steam reforming process for H2 generation[J]. Appl Catal A:Gen, 2018, 554:44-53. doi: 10.1016/j.apcata.2018.01.022
    [13]
    FASANYA O O, AL-HAJRI R, AHMED O U, MYINT M T Z, ATTA A Y, JIBRIL B Y, DUTTA J. Copper zinc oxide nanocatalysts grown on cordierite substrate for hydrogen production using methanol steam reforming[J]. Int J Hydrogen Energy, 2019, 44(41):22936-22946. doi: 10.1016/j.ijhydene.2019.06.185
    [14]
    KHANI Y, BAHADORAN F, SAFARI N, SOLTANALI S, TAHERI S A. Hydrogen production from steam reforming of methanol over Cu-based catalysts:The behavior of ZnxLaxAl1-xO4 and ZnO/La2O3/Al2O3 lined on cordierite monolith reactors[J]. Int J Hydrogen Energy, 2019, 44(23):11824-11837. doi: 10.1016/j.ijhydene.2019.03.031
    [15]
    VERLATO E, BARISON S, CIMINO S, DERGAL F, LISI L, MANCINO G, MUSIANI M, VAZQUEZ-GOMEZ L. Catalytic partial oxidation of methane over nanosized Rh supported on Fecralloy foams[J]. Int J Hydrogen Energy, 2014, 39(22):11473-11485. doi: 10.1016/j.ijhydene.2014.05.076
    [16]
    BENITO P, NUYTS G, MONTI M, NOLF W D, FORNASARI G, JANSSENS K, SCAVETTA E, VACCARI A. Stable Rh particles in hydrotalcite-derived catalysts coated on FeCrAlloy foams by electrosynthesis[J]. Appl Catal B:Environ, 2015, 179:321-332. doi: 10.1016/j.apcatb.2015.05.035
    [17]
    AVILA P, MONTES M, MIRO E E. Monolithic reactors for environmental applications:A review on preparation technologies[J]. Chem Eng J, 2005, 109(1/3):11-36. http://www.sciencedirect.com/science/article/pii/S1385894705000793
    [18]
    PALMA V, MARTINO M, MELONI E, RICCA A. Novel structured catalysts configuration for intensification of steam reforming of methane[J]. Int J Hydrogen Energy, 2017, 42(3):1629-1638. doi: 10.1016/j.ijhydene.2016.06.162
    [19]
    LOPEZ E, DIVINS N J, ANZOLA A, SCHBIB S, BORIO D, LLORCA J. Ethanol steam reforming for hydrogen generation over structured catalysts[J]. Int J Hydrogen Energy, 2013, 38(11):4418-4428. doi: 10.1016/j.ijhydene.2013.01.174
    [20]
    刘娜, 袁中山, 张纯希, 王淑娟, 李德意, 王树东. Zn-Cr整体催化剂中Ce-Zr溶胶涂层的制备、表征及对甲醇自热重整反应的影响[J].催化学报, 2005, 26(12):1078-1082. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cuihuaxb200512009

    LIU Na, YUAN Zhong-shan, ZHANG Chun-xi, WANG Shu-juan, LI De-yi, WANG Shu-dong. Preparation, characterization and effect of Ce-Zr washcoat on Zn-Cr monolithic catalysts for methanol autothermal reforming[J]. Chin J Catal, 2005, 26(12):1078-1082. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cuihuaxb200512009
    [21]
    刘娜, 王树东, 袁中山, 张纯希, 王淑娟, 李德意, 付桂芝.甲醇自热重整制氢整体催化剂的制备[J].化工学报, 2004, 55(S1):90-94. http://www.cnki.com.cn/Article/CJFDTotal-HGSZ2004S1017.htm

    LIU Na, WANG Shu-dong, YUAN Zhong-shan, ZHANG Chun-xi, WANG Shu-juan, LI De-yi, FU Gui-zhi. Methanol autothermal reforming for hydrogen generation over monolithic catalyst[J]. CIESC J, 2004, 55(S1):90-94. http://www.cnki.com.cn/Article/CJFDTotal-HGSZ2004S1017.htm
    [22]
    LIU H T, LI S Q, ZHANG S B, WANG J M, ZHOU G J, CHEN L, WANG X L. Catalytic performance of novel Ni catalysts supported on SiC monolithic foam in carbon dioxide reforming of methane to synthesis gas[J]. Catal Commun, 2008, 9(1):51-54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=313383b0d20bcb75449aa2eba45e0456
    [23]
    CUI X T, KAER S K. Two-dimensional thermal analysis of radial heat transfer of monoliths in small-scale steam methane reforming[J]. Int J Hydrogen Energy, 2018, 43(27):11952-11968. doi: 10.1016/j.ijhydene.2018.04.142
    [24]
    GOU Y Z, WANG H, JIAN K, SHAO C W, WANG X Z. Preparation and characterization of SiC fibers with diverse electrical resistivity through pyrolysis under reactive atmospheres[J]. J Eur Ceram Soc, 2017, 37(2):517-522. doi: 10.1016/j.jeurceramsoc.2016.09.023
    [25]
    ZHANG L, PAN L W, NI C J, SUN T J, ZHAO S S, WANG S D, WANG A J, HU Y K. CeO2-ZrO2-promoted CuO/ZnO catalyst for methanol steam reforming[J]. Int J Hydrogen Energy, 2013, 38(11):4397-4406. doi: 10.1016/j.ijhydene.2013.01.053
    [26]
    杨淑倩, 贺建平, 张娜, 隋晓伟, 张磊, 杨占旭.稀土掺杂改性Cu/Zn-Al水滑石衍生催化剂对甲醇水蒸气重整制氢性能的影响[J].燃料化学学报, 2018, 46(2):179-188. http://www.ccspublishing.org.cn/article/id/00984ce6-5d53-4ea0-929f-0c4b80514203

    YANG Shu-qian, HE Jian-ping, ZHANG Na, SUI Xiao-wei, ZHANG Lei, YANG Zhan-xu. Effect of rare-earth element modification on the performance of Cu/ZnAl catalysts derived from hydrotalcite precursor in methanol steam reforming[J]. J Fuel Chem Technol, 2018, 46(2):179-188. http://www.ccspublishing.org.cn/article/id/00984ce6-5d53-4ea0-929f-0c4b80514203
    [27]
    ZHANG X, SHI P. Production of hydrogen by steam reforming of methanol on CeO2 promoted Cu/Al2O3 catalysts[J]. J Mol Catal A:Chem, 2003, 194(1/2):99-105. http://www.sciencedirect.com/science/article/pii/S1381116902004648
    [28]
    ZHANG X R, SHI P, ZHAO J X, ZHAO M Y, LIU C T. Production of hydrogen for fuel cells by steam reforming of methanol on Cu/ZrO2/Al2O3 catalysts[J]. Fuel Process Technol, 2003, 83(1/3):183-192. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a32b3ad82d84942b2068be5b564bb769
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (367) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return