Volume 45 Issue 5
May  2017
Turn off MathJax
Article Contents
LIAO Pei-yi, ZHANG Chen, ZHANG Li-jun, YANG Yan-zhang, ZHONG Liang-shu, WANG Hui, SUN Yu-han. Effect of promoter and CO2 content in the feed on the performance of CuFeZr catalyst in the synthesis of higher alcohol from syngas[J]. Journal of Fuel Chemistry and Technology, 2017, 45(5): 547-555.
Citation: LIAO Pei-yi, ZHANG Chen, ZHANG Li-jun, YANG Yan-zhang, ZHONG Liang-shu, WANG Hui, SUN Yu-han. Effect of promoter and CO2 content in the feed on the performance of CuFeZr catalyst in the synthesis of higher alcohol from syngas[J]. Journal of Fuel Chemistry and Technology, 2017, 45(5): 547-555.

Effect of promoter and CO2 content in the feed on the performance of CuFeZr catalyst in the synthesis of higher alcohol from syngas

Funds:

the National Science Foundation for Young Scientists of China 21403278

More Information
  • Corresponding author: WANG Hui, Tel: +86-13917459728, Fax: +86-21-20350867, E-mail: wanghh@sari.ac.cn
  • Received Date: 2017-01-06
  • Rev Recd Date: 2017-03-10
  • Available Online: 2021-01-23
  • Publish Date: 2017-05-10
  • The effect of various promoting additives (Mn, Zn, Co) on the performance of CuFeZr catalyst in the synthesis of higher alcohol from syngas was investigated. The results of nitrogen physisorption, XRD and H2-TPR characterization show that these additives can reduce the particle size and enhance the surface basicity and the adsorption capacity towards CO. Especially, the doping of Zn in the CuFeZr catalyst can effectively enhance the interaction between Cu and Fe, strengthen the surface basicity, and improve the reducibility and CO adsorption ability. For the synthesis of higher alcohol from syngas over the CuFeZr catalyst, the catalytic evaluation results in a fixed bed reactor illustrate that the activity and selectivity to alcohols are greatly enhanced by the addition of Zn promoter; the space time yield (STY) of ROH is increased from 0.026 to 0.071 g/(gcat·h). Meanwhile, it was found that CO2 in the feed can improve the CO conversion as well as the STY to alcohols and hydrocarbons, but suppress the chain growth and decrease the ratio of olefin to paraffin; proper amount of CO2 (2.5%) is beneficial to the formation of alcohols and hydrocarbons of short chains.
  • 本文的英文电子版由Elsevier出版社在ScienceDirect上出版(http://www.sciencedirect.com/science/journal/18725813)).
  • loading
  • [1]
    ANDERSSON R, BOUTONNET M, JARAS S. Correlation patterns and effect of syngas conversion level for product selectivity to alcohols and hydrocarbons over molybdenum sulfide based catalysts[J]. Appl Catal A: Gen, 2012, 417/418(3): 119-128. http://www.sciencedirect.com/science/article/pii/S0926860X11007514
    [2]
    ANDERSSON R, BOUTONNET M, JARAS S. Effect of CO2 in the synthesis of mixed alcohols from syngas over a K/Ni/MoS2 catalyst[J]. Fuel, 2013, 107: 715-723. doi: 10.1016/j.fuel.2012.11.044
    [3]
    XU R, WEI W, LI W H, HU T D, SUN Y H. Fe modified CuMnZrO2 catalysts for higher alcohols synthesis from syngas: Effect of calcination temperature[J]. J Mol Catal A: Chem, 2005, 234(1/2): 75-83. http://www.sciencedirect.com/science/article/pii/S1381116905001068
    [4]
    LIN M, FANG K, LI D, SUN Y H. CO hydrogenation to mixed alcohols over co-precipitated Cu-Fe catalysts[J]. Catal Commun, 2008, 9(9): 1869-1873. doi: 10.1016/j.catcom.2008.03.004
    [5]
    XU R, ZHANG S, ROBERTS C B. Mixed alcohol synthesis over a K promoted Cu/ZnO/Al2O3 catalyst in supercritical hexanes[J]. Ind Eng Chem Res, 2013, 52(41): 14514-14524. doi: 10.1021/ie3024017
    [6]
    YANG X, WEI Y, SU Y, ZHOU L. Characterization of fused Fe-Cu based catalyst for higher alcohols synthesis and DRIFTS investigation of TPSR[J]. Fuel Process Technol, 2010, 91(9): 1168-1173. doi: 10.1016/j.fuproc.2010.03.032
    [7]
    HUBER G W, IBORRA S, CORMA A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering[J]. Chem Rev, 2006, 106(9): 4044-4098. doi: 10.1021/cr068360d
    [8]
    SUBRAMANI V, GANGWAL S K. A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol[J]. Energy Fuels, 2008, 22(2): 117-136. doi: 10.1021/ef700411x?src=recsys&journalCode=enfuem
    [9]
    SLAA J C, OMMEN J G V, ROSS J R H. The synthesis of alcohols using Cu/ZnO/Al2O3 (Ce or Mn) catalysts[J]. Top Catal, 1995, 2(1): 79-89. https://www.researchgate.net/publication/256426666_The_synthesis_of_alcohols_using_CuZnOA12O3_Ce_or_Mn_catalysts
    [10]
    SLAA J C, OMMEN J G V, ROSS J R H. The synthesis of higher alcohols using modified Cu/ZnO/Al2O3 catalysts[J]. Catal Today, 1992, 15(1): 129-148. doi: 10.1016/0920-5861(92)80125-7
    [11]
    HERMAN R G. Advances in catalytic synthesis and utilization of higher alcohols[J]. Catal Today, 2000, 55(3): 233-245. doi: 10.1016/S0920-5861(99)00246-1
    [12]
    ZHANG Q W, LI X H, FUJIMOTO K R. Pd-promoted Cr/ZnO catalyst for synthesis of methanol from syngas[J]. Appl Catal A: Gen, 2006, 309(1): 28-32. doi: 10.1016/j.apcata.2006.04.026
    [13]
    SMITH K J, ANDERSON R B. A chain growth scheme for the higher alcohols synthesis[J]. J Catal, 1984, 85(2): 428-436. doi: 10.1016/0021-9517(84)90232-X
    [14]
    MEI D, ROUSSEAU R, KATHMANN S M, GLEZAKOU V A, ENGELHARD M H, JIANG W, WANG C, GERBER M, WHITE J, STEVENS D. Ethanol synthesis from syngas over Rh-based/SiO2 catalysts: A combined experimental and theoretical modeling study[J]. J Catal, 2010, 271(2): 325-342. doi: 10.1016/j.jcat.2010.02.020
    [15]
    PRIETO G, CONCEPCION P, MARTINEZ A, MENDOZA E. New insights into the role of the electronic properties of oxide promoters in Rh-catalyzed selective synthesis of oxygenates from synthesis gas[J]. J Catal, 2011, 280(2): 274-288. doi: 10.1016/j.jcat.2011.03.025
    [16]
    LI Z R, XIE Y N. Structures and performance of Pd-Mo-K/Al2O3 catalysts used for mixed alcohol synthesis from synthesis gas[J]. Catal Lett, 2000, 65(1): 43-48. https://www.researchgate.net/publication/226853392_Structures_and_performance_of_Pd-Mo-KAl2O3_catalysts_used_for_mixed_alcohol_synthesis_from_synthesis_gas
    [17]
    SHI X R, JIAO H, HERMANN K, WANG J. CO hydrogenation reaction on sulfided molybdenum catalysts[J]. J Mol Catal A: Chem, 2009, 312(1/2): 7-17. http://www.sciencedirect.com/science/article/pii/S1381116909003161
    [18]
    XIANG M L, LI D B, XIAO H C, ZHANG J L, QI H J, LI W H, ZHONG B, SUN Y H. Synthesis of higher alcohols from syngas over Fischer-Tropsch elements modified K/beta-Mo2C catalysts[J]. Fuel, 2008, 87(4/5): 599-603. http://www.sciencedirect.com/science/article/pii/S0016236107000920
    [19]
    LIU C C, LIN M G, FANG K G, SUN Y H. Preparation of nanostructured molybdenum carbides for CO hydrogenation[J]. RSC Adv, 2014, 144(4): 20948-20954. http://pubs.rsc.org/en/content/articlelanding/2014/ra/c4ra01586j#!divAbstract
    [20]
    DING M, LIU J, ZHANG Q, TSUBAKI N, WANG T, MA L L. Preparation of copper-iron bimodal pore catalyst and its performance for higher alcohols synthesis[J]. Catal Commun, 2012, 28: 138-142. doi: 10.1016/j.catcom.2012.08.027
    [21]
    DING M Y, QIU M H, LIU J G, LI Y P, WANG T J, MA L L, WU C Z. Influence of manganese promoter on co-precipitated Fe-Cu based catalysts for highe alcohols synthesis[J]. Fuel, 2013, 109(7): 21-27. http://www.sciencedirect.com/science/article/pii/S0016236112004541
    [22]
    王野.以铝为载体的铜钴催化剂用于CO加氢的结构和性能[D].福建:厦门大学, 2012.

    WANG Ye. Structure and catalytic performance of alumina-supported copper-cobalt catalysts for carbon monoxide hydrogenation[D]. Fujian: Xiamen University, 2012.
    [23]
    WANG J, CHERNAVSKⅡ P A, WANG Y, KHODAKOV A Y. Influence of the support and promotion on the structure and catalytic performance of copper-cobalt catalysts for carbon monoxide hydrogenation[J]. Fuel, 2013, 103(1): 1111-1122. http://www.sciencedirect.com/science/article/pii/S0016236112006151
    [24]
    FANG K, LI D, LIN M, XIANG M, WEI W, SUN Y H. A short review of heterogeneous catalytic process for mixed alcohols synthesis via syngas[J]. Catal Today, 2009, 147(2): 133-138. doi: 10.1016/j.cattod.2009.01.038
    [25]
    GAO W, ZHAO Y F, LIU J M, HUANG Q W, HE S, LI C M, ZHAO J W, WEI M. Catalytic conversion of syngas to mixed alcohols over CuFe-based catalysts derived from layered double hydroxides[J]. Catal Sci Technol, 2013, 3(5): 1324-1332. doi: 10.1039/c3cy00025g
    [26]
    LU Y, YU F, HU J, LIU J. Catalytic conversion of syngas to mixed alcohols over Zn-Mn promoted Cu-Fe based catalyst[J]. Appl Catal A: Gen, 2012, 429-430(25): 48-58. http://www.sciencedirect.com/science/article/pii/S0926860X12002049
    [27]
    林明桂, 房克功, 李德宝, 孙予罕. Zn、Mn助剂对CuFe合成低碳醇催化剂的影响[J]. 2008, 24(5): 833-838. http://www.cnki.com.cn/Article/CJFDTOTAL-WLHX200805019.htm

    LIN Ming-gui, FANG Ke-gong, LI De-bao, SUN Yu-han. Effect of Zn and Mn promoters on copper-iron based catalysts for higher alcohol synthesis[J]. Acta Phys Chem Sin, 2008, 24(5): 833-838. http://www.cnki.com.cn/Article/CJFDTOTAL-WLHX200805019.htm
    [28]
    LUK H T, MONDELLI C, FERRÉ D C, STEWART J A, PÉREZ-RAMÍREZ J. Status and prospects in higher alcohols synthesis from syngas[J]. Chem Soc Rev, 2017, 46(5): 1358-1426. doi: 10.1039/C6CS00324A
    [29]
    LU Y, CAO B, YU F, LIU J, BAO Z, GAO J. High selectivity higher alcohols synthesis from syngas over three-dimensionally ordered macroporous Cu-Fe catalysts[J]. ChemCatChem, 2014, 6(2): 473-478. doi: 10.1002/cctc.v6.2
    [30]
    HAN X Y, FANG K G, SUN Y H. Effects of metal promotion on CuMgFe catalysts derived from layered double hydroxides for higher alcohol synthesis via syngas[J]. RSC Adv, 2015, 5(64): 51868-51874. doi: 10.1039/C5RA05846E
    [31]
    HAN X Y, FANG K G, ZHOU J, ZHAO L, SUN Y H. Synthesis of higher alcohols over highly dispersed Cu-Fe based catalysts derived from layered double hydroxides[J]. J Colloid Interf Sci, 2016, 470(6): 162-171. http://www.sciencedirect.com/science/article/pii/S0021979715302320
    [32]
    DING M Y, TU J L, QIU M H, WANG T J, MA L L, LI Y P. Impact of potassium promoter on Cu-Fe based mixed alcohols synthesis catalyst[J]. Appl Energy, 2015, 138: 584-589. doi: 10.1016/j.apenergy.2014.01.010
    [33]
    XIANG Y Z, CHITRY V, LIDDICOAT P, FELFER P, CAIRNEY J, RINGER S, KRUSE N. Long-chain terminal alcohols through catalytic CO hydrogenation[J]. J Am Chem Soc, 2013, 135(19): 7114-7117. doi: 10.1021/ja402512r
    [34]
    SMIT E D, WECKHUYSEN B M. The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour[J]. Chem Soc Rev, 2008, 37(12): 2758-2781. doi: 10.1039/b805427d
    [35]
    MUNNIK P, DE JONGHP E, DE JONGK P. Control and impact of the nanoscale distribution of supported cobalt particles used in Fischer-Tropsch catalysis[J]. J Am Chem Soc, 2014, 136(20): 7333-7340. doi: 10.1021/ja500436y
    [36]
    SCHULZ H. Short history and present trends of Fischer-Tropsch synthesis[J]. Appl Catal A: Gen, 1999, 186(1/2): 3-12. http://www.sciencedirect.com/science/article/pii/S0926860X9900160X
    [37]
    NEWSOME D S. Water-gas shift reaction[J]. Catal Rev, 1980, 21(2): 275-318. doi: 10.1080/03602458008067535
    [38]
    HALL W K, KOKES R J, EMMETT P H. Mechanism studies of the Fischer-Tropsch synthesis-the addition of radioactive methanol, carbon dioxide and gaseous formaldehyde[J]. J Am Chem Soc, 1957, 79(12): 2983-2989. doi: 10.1021/ja01569a001
    [39]
    XU L G, BAO S Q, HOUPT D J, LAMBERT S H, DAVIS B H. Role of CO2 in the initiation of chain growth and alcohol formation during the Fischer-Tropsch synthesis[J]. Catal Today, 1997, 36(3): 347-355. doi: 10.1016/S0920-5861(96)00244-1
    [40]
    LU G, ZHANG C F, CANG Y Q, ZHU Z B, NI Y H, CHEN L J, YU F. Synthesis of mixed alcohols from CO2 contained syngas on supported molybdenum sulfide catalysts[J]. Appl Catal A: Gen, 1997, 150(2): 243-252. doi: 10.1016/S0926-860X(96)00285-2
    [41]
    DING M Y, QIU M H, WANG T J, MA L L, WU C Z, LIU J G. Effect of iron promoter on structure and performance of CuMnZnO catalyst for higher alcohols synthesis[J]. Appl Energy, 2012, 97(9): 543-547. http://www.sciencedirect.com/science/article/pii/S0306261911007896
    [42]
    SHI L M, CHU W. Catalytic properties for higher-alcohol synthesis of CuCo based catalysts promoted by transition elements (Zn, Mo)[J]. J Mol Catal A: Chem, 2011, 25(4): 316-321. http://en.cnki.com.cn/Article_en/CJFDTOTAL-FZCH201104007.htm
    [43]
    LIU J G, DING M Y, WANG T J, MA L L. Promoting effect of cobalt addition on higher alcohols synthesis over copper-based catalysts[J]. Adv Mater Res, 2012, 550/553: 270-275. doi: 10.4028/www.scientific.net/AMR.550-553
    [44]
    MIRANDA L S, ANDREW C, JAMES J S. Reduction processes in Cu/SiO2, Co/SiO2, and CuCo/SiO2 catalysts[J]. Catal Today, 2012, 182(1): 60-66. doi: 10.1016/j.cattod.2011.07.026
    [45]
    DING M Y, YANG Y, WU B S, LI Y W, WANG T J, MA L L. Study on reduction and carburization behaviors of iron-based Fischer-Tropsch synthesis catalyst[J]. Appl Energy, 2014, 61(10): 2267-2270. http://www.sciencedirect.com/science/article/pii/S1876610214034821
    [46]
    CORTES J, DROGUETT S. Temperature programmed desorption of CO from supported cobalt[J]. J Catal, 1975, 38(s1/s3): 477-481. http://www.sciencedirect.com/science/article/pii/0021951775901104
    [47]
    CHENG X, WANG L, WANG Z, ZHANG M, MA C. Catalytic performance of NO reduction by CO over activated semicoke supported Fe/Co catalysts[J]. Ind Eng Chem Res, 2016, 55(50): 12710-12722. doi: 10.1021/acs.iecr.6b00804
    [48]
    AN X, WU B S, WAN H J, LI T Z, TAO Z C, XIANG H W, LI Y W. Comparative study of iron-based Fischer-Tropsch synthesis catalyst promoted with potassium or sodium[J]. Catal Commun, 2007, 8(12): 1957-1962. doi: 10.1016/j.catcom.2007.03.016
    [49]
    ZHANG C H, YANG Y, TENG B T, LI T Z, ZHENG H Y, XIANG H W, LI Y W. Study of an iron-manganese Fischer-Tropsch synthesis catalyst promoted with copper[J]. J Catal, 2006, 237(2): 405-415. doi: 10.1016/j.jcat.2005.11.004
    [50]
    WANG J, CHERNAVSKⅡ P A, WANG Y, KHODAKOV A Y. Influence of the support and promotion on the structure and catalytic performance of copper-cobalt catalysts for carbon monoxide hydrogenation[J]. Fuel, 2013, 103: 1111-1122. doi: 10.1016/j.fuel.2012.07.055
    [51]
    XIANG Y, KRUSE N. Tuning the catalytic CO hydrogenation to straight-and long-chain aldehydes/alcohols and olefins/paraffins[J]. Nat Commun, 2016, 7: 13058. doi: 10.1038/ncomms13058
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (90) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return