Volume 41 Issue 06
Jun.  2013
Turn off MathJax
Article Contents
LIN Hua-lin, LI Ke-jian, ZHANG Xu-wen. Structure characterization and model construction of Shangwan coal and it’s inertinite concentrated[J]. Journal of Fuel Chemistry and Technology, 2013, 41(06): 641-648.
Citation: LIN Hua-lin, LI Ke-jian, ZHANG Xu-wen. Structure characterization and model construction of Shangwan coal and it’s inertinite concentrated[J]. Journal of Fuel Chemistry and Technology, 2013, 41(06): 641-648.

Structure characterization and model construction of Shangwan coal and it’s inertinite concentrated

  • Received Date: 2012-11-08
  • Rev Recd Date: 2013-01-16
  • Publish Date: 2013-06-30
  • Shendong Shangwan coal (SDR) and its inertinite concentrated(SDI)from petrographical separation were characterized by 13C-CP/MAS NMR, FT-IR and XPS and their structure unit information was obtained. Based on structure parameters and elemental analysis, macromolecular structure models of SDR and SDI were constructed and 13C chemical shift of the two models was calculated by ACD/CNMR predictor. The results indicate that naphthalene with condensation degrees of 2 is the main form of aromatic carbon in SDR, naphthalene and phenanthrene are those in SDI. The aromaticity of SDI is greater than that of SDR. For SDR and SDI, oxygen atoms are present as carbonyl groups and nitrogen atoms exist in the forms of pyridine and pyrrole. The calculated chemical shift spectrogram of model is well consistent with that of the experimental results. The structural formulas calculated for SDR and SDI are C181H136N2O24 and C186H148N2O22, respectively.
  • loading
  • GIVEN P H, CRONAUER D C, SPACKMAN W, LOVELL H L, DAVIS A, BISWAS B. Dependence of coal liquefaction behaviour on coal characteristics: 2. Role of petrographic composition[J]. Fuel, 1975, 54(1): 40-49.
    LI W H, HUO W D, SHU G P, BAI X F, DAI H W. Hydroliquefaction characteristics of majiata coal and its macerals components[J]. Journal of Fuel Chemistry and Technology, 2001, 29(2): 104-107.
    相建华, 曾凡桂, 梁虎珍, 孙蓓蕾, 张莉, 李美芬, 贾建波. 兖州煤大分子结构模型构建及其分子模拟[J]. 燃料化学学报, 2011, 39(7): 481-488. (XIANG Jian-hua, ZENG Fan-gui, LIANG Hu-zhen, SUN Bei-lei, ZHANG Li, LI Mei-fen, JIA Jian-bo. Model construction of the macromolecular structure of Yanzhou coal and its molecular simulation[J]. Journal of Fuel Chemistry and Technology, 2011, 39(7): 481-488.)
    TAKANOHASHI T, KAWASHIMA H. Construction of a model structure for Upper Freeport coal 13C NMR chemical shift calculation[J]. Energy Fuels, 2002, 16(2): 379-387.
    OHKAWA T, SASAI T, KOMODA N, MURATA S, NOMURA M. Computer-aided construction of coal molecular structure using construction knowledge and partial structure evaluation[J]. Energy Fuels, 1997, 11(5): 937-944.
    FAULON J L, CARLSON G A, HATCHER P G. Statistical models for bituminous coal: A three-dimensional evaluation of structural and physical properties based on computer-generated structures[J]. Energy Fuels, 1993, 7(6): 1062-1072.
    罗陨飞, 李文华, 陈亚飞. 中低变质程度煤显微组分结构的13C-NMR研究[J]. 燃料化学学报, 2005, 33(5): 540-543. (LUO Yun-fei, LI Wen-hua, CHEN Ya-fei. 13C-NMR analysis on different macerals of several low-to-medium rank coals[J]. Journal of Fuel Chemistry and Technology, 2005, 33(5): 540-543.)
    谷红伟. 神华煤及其显微组分的分子式探讨研究[J]. 煤质技术, 2009, 15(5): 71-73. (GU Hong-wei. Study on the molecular formulas of Shenhua coal and its macerals[J]. Clean Coal Technology, 2009, 15(5): 71-73.)
    KOZLOWSKI M. XPS study of reductively and non-reductively modified coals[J]. Fuel, 2004, 83(3): 259-265.
    GRZYBEK T, PIETRZAK R, WACHOWSKA H. X-ray photoelectron spectroscopy study of oxidized coals with different sulphur content[J]. Fuel Process Technol, 2002, 77-78: 1-7.
    GARDNER S D, SINGAMSETTY C S K, BOOTH G L, HE G R. Surface characterization of carbon fibers using angle-resolved XPS and ISS[J]. Carbon, 1995, 33(5): 587-595.
    THOMAS S, BRUHL I, HEILMANN D, KLEINPETER E. 13C NMR chemical shift calculations for some substituted pyridines: A comparative consideration[J]. J Chem Inf Comput Sci, 1997, 37(4): 726-730.
    KAWASHIMA H, TAKANOHASHI T. Modification of model structures of Upper Freeport coal extracts using 13C NMR chemical shift calculation[J]. Energy Fuels, 2001, 15(3): 591-598.
    TREWHELLA M T, POPLETT L J F, GRINT A. A structure of Green River oil shale kerogen: Determination using solid state 13C-NMR spectroscopy[J]. Fuel, 1986, 65(4): 541-546.
    彭立才, 韩德馨, 邵文斌, 刘青文. 柴达木盆地北缘侏罗系烃源岩干酪根13C核磁共振研究[J]. 石油学报, 2002, 23(2): 34-37. (PENG Li-cai, HAN De-xin, SHAO Wen-bin, LIU Qing-wen. 13C NMR research on the Kerogens of Jurassic hydrocarbon source rock in the northen edge, Qaidam Basin[J]. Acta Petrolei Sinica, 2002, 23(2): 34-37.)
    王丽, 张蓬洲, 郑敏. 用固体核磁共振和电子能谱研究我国高硫煤的结构[J]. 燃料化学学报, 1996, 24(6): 539-543. (WANG Li, ZHANG Peng-zhou, ZHENG Min. Study on structural characterization of three Chinese coals of high organic sulphur content using XPS and solid-state NMR spectroscopy[J]. Journal of Fuel Chemistry and Techonology, 1996, 24(6): 539-543.)
    SUN X G. The investigation of chemical structure of coal macerals via transmitted-light FR-IR microspectroscopy[J]. Spectrochim Acta Part A, 2005, 62(1-3): 557-564.
    KELEMEN S R, AFEWOEKI M, GORBATY M L, KWIATEK P J, SOLUM M S, HU J Z, PUGMIRE R J. XPS and 15N NMR study of nitrogen forms in carbonaceous solids[J]. Energy Fuels, 2002, 16(6): 1507-1515.
    GORBATY M L, GEORGE G N, KELEMEN S R. Chemistry of organically bound sulphur forms during the mild oxidation of coal[J]. Fuel, 1990, 69(8): 1065-1067.
    VANDENBROUCKE M, LARGEAU C. Kerogen origin, evolution and sreucture[J]. Org Geochem, 2007, 38(5): 719-833.
    TAKANOHASHI T, IINO M, NAKAMURA K. Simulation of interaction of coal associates with solvents using the molecular dynamics calculation[J]. Energy Fuels, 1998, 12(6): 1168-1173.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1297) PDF downloads(634) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return