Volume 41 Issue 06
Jun.  2013
Turn off MathJax
Article Contents
WANG Bao-wei, SUN Qi-mei, LI Yan-ping, LIU Si-han. Photocatalytic activity of nano-CuO/TiO2 composites prepared by a simple impregnated method[J]. Journal of Fuel Chemistry and Technology, 2013, 41(06): 741-747.
Citation: WANG Bao-wei, SUN Qi-mei, LI Yan-ping, LIU Si-han. Photocatalytic activity of nano-CuO/TiO2 composites prepared by a simple impregnated method[J]. Journal of Fuel Chemistry and Technology, 2013, 41(06): 741-747.

Photocatalytic activity of nano-CuO/TiO2 composites prepared by a simple impregnated method

  • Received Date: 2012-12-06
  • Rev Recd Date: 2013-01-06
  • Publish Date: 2013-06-30
  • CuO/TiO2 composites were prepared by a simple impregnated method with Cu(NO3)2·3H2O and P25 as precursors. The characteristic of photocatalysts were analyzed by N2-physisorption, XRD, TEM, UV-vis DRS spectra. In this paper, the effects of Cu content, the scattered catalyst amount, calcination temperature of the photocatalyst and methanol concentration for the photocatalytic activity of CuO/TiO2 composites were studied. We also investigated the stability of the catalyst and proposed a mechanism of the photocatalytic process. The results suggested that the appropriate content of Cu component in CuO/TiO2 is 2.0%~7.5% and hydrogen production rate can reach 1 022 μmol/(h·g) at 2.0% of Cu content, 10% of methanol concentration, 350℃ of calcination temperature and 1.0 g/L of scattered catalyst amount. It was also demonstrated that CuO/TiO2 photocatalyst had a stable activity for H2 evolution.
  • loading
  • FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238: 37-38.
    王保伟, 孙启梅. 可见光催化水解制氢催化剂研究进展[J]. 化学通报, 2012, 75(12): 1059-1068. (WANG Bao-wei, SUN Qi-mei. An overview of photocatalyst for water splitting producing hydrogen under visible-light irradiation[J]. Chemistry Bulletin, 2012, 75(12): 1059-1068.)
    WU Y Q, LU G X. The role of Cu(I) species for photocatalytic hydrogen generation over CuOx/TiO2[J]. Catal Lett, 2009, 133(1): 97-105.
    彭绍琴, 刘雄鹰, 李越湘. 伊红-Y敏化硫掺杂TiO2的制备及可见光光解水制氢性能[J]. 南昌大学学报, 2008, 32(5): 462-465. (PENG Shao-qin, LIU Xiong-ying, LI Yue-xiang. Preparation of sulfur-doped TiO2 sensitizedby EosinY and performance of photocatalytic hydrogen evolution under visible light irradiation[J]. Journal of Nanchang University, 2008, 32(5): 462-465.)
    ICHIHASHI Y C, YAMAGUCHI M. Photodecomposition of water with methane over titanium oxide photocatalysts modified with metal[J]. Res Chem Intermed, 2010, 36(5): 463-472.
    XU S P, NG J W. Fabrication and comparison of highly efcient Cu incorporated TiO2 photocatalyst for hydrogen generation from water[J]. Int J Hydrogen Energy, 2010, 35(11): 5254-5261.
    CHOI W Y, TEMIN A, HOFFMANN M R. The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics[J]. J Phys Chem, 1994, 98(51): 13669-13679.
    LALITH K, REDDY J K. Continuous hydrogen production activity over finely dispersed Ag2O/TiO2 catalysts from methanol: Water mixtures under solar irradiation: A structure-activity correlation[J]. Int J Hydrogen Energy, 2010, 35(9): 3991-4001.
    陈孝云, 陆东芳, 黄锦锋, 卢燕凤, 郑建强. 离子液体-水混合介质中合成N、F共掺杂宽光域响应多孔TiO2光催化剂及性能[J]. 物理化学学报, 2012, 28(1): 161-169. (CHEN Xiao-yun, LU Dong-fang, HUANG Jin-feng, LU Yan-feng, ZHENG Jian-qiang. Preparation and properties of N-F co-doped TiO2 photocatalyst with wide range light response and multipore structure from ionic liquid-water mixture solvent[J]. Acta Physico-Chimica Sinica, 2012, 28(1): 161-169.)
    SONG K X, ZHOU J H, BAO J C, FENG Y Y. Photocatalytic activity of (copper, nitrogen)-codoped titaniumdioxide nanoparticles[J]. J Am Ceram Soc, 2008, 91(4): 1369-1373.
    董源, 蒋淇, 杨开, 彭祥, 黄铁骑, 马紫峰, 上官文峰. 微波法制备 CdS-TiO2NT复合催化剂及其在可见光下分解水制氢的性能[J]. 高校化学工程学报, 2010, 24(3): 416-421. (DONG Yuan, JIANG Qi, YANG Kai, PENG Xiang, HAUNG Tie-qi, SHANG GUAN Wen-feng. Preparation of CdS-TiO2NT composite catalysts by microwave irradiation method and its phtocatalytic performance of splitting water to H2 under visible light[J]. Journal of Chemical Engineering of Chinese Universities, 2010, 24(3): 416-421. )
    ZHANG X Y, SUN Y J. A green and facile synthesis of TiO2/grapheme nanocomposites and their photocatalytic activity for hydrogen evolution[J]. Int J Hydrogen Energy, 2012, 37(1): 811-815.
    ZHANG X Y, LI H P, CUI X L, LIN Y H. Graphene/TiO2 nanocomposites: Synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting[J]. J Mater Chem, 2010, 20(14): 2801-2806.
    XU S P, DU A J H. Highly efficient CuO incorporated TiO2 nanotube photocatalyst for hydrogen production from water[J]. Int J Hydrogen Energy, 2011, 36(11): 6560-6568.
    XU S P, NG J W, DU A J H, LIU J C, SUN D D L. Highly efficient TiO2 nanotube photocatalyst for simultaneous hydrogen production and copper removal from water[J]. Int J Hydrogen Energy, 2011, 36(11): 6538-6545.
    ZHAO P J, WU R, HOU J, CHANG A M, GUAN F, ZHANG B. One-step hydrothermal synthesis and visible-light photocatalytic activity of ultrafine Cu-nanodot-modified TiO2 nanotubes[J]. Acta Physico-Chimica Sinica, 2012, 28(8): 1971-1977.
    YU J G, HAI Y. Photocatalytic hydrogen production over CuO-modified titania[J]. Colloid Interface Sci, 2011, 357(1): 223-228.
    MONTINI T, GOMBAC V, SOREDELLI L, DELGADO J, CHEN X W, ADAMI G, FORNASIERO P. Nanostructured Cu/TiO2 photocatalysts for H2 production from ethanol and glycerol aqueous solutions[J]. Chem Cat Chem, 2011, 3(3): 574-577.
    LI Z H, LIU J W, WANG D J, GAO Y, SHEN J. Cu2O/Cu/TiO2 nanotube ohmic heterojunction arrays with enhanced photocatalytic hydrogen production activity[J]. Int J Hydrogen Energy, 2012, 37(8): 6431-6437.
    XU S P, SUN D D L. Significant improvement of photocatalytic hydrogen generation rate over TiO2 with deposited CuO[J]. Int J Hydrogen Energy, 2009, 34(15): 6096-6104.
    BOWKER M, JAMES D, STONE P, BENNETT R, PERKINS N, MILLARD L, GREAVES J, DICKINSON A. Catalysis at the metal-support interface: Exemplified by the photocatalytic reforming of methanol on Pd/TiO2[J]. J Catal, 2003, 217(2): 427-433.
    GOMBAC V, SORDELLI L. CuOx-TiO2 photocatalysts for H2 production from ethanol and glycerol solutions[J]. J Phys Chem A, 2010, 114(11): 3916-3925.
    BANDARA J, UDAWATTA C P K. Highly stable CuO incorporated TiO2 catalyst for photocatalytic hydrogen production from H2O[J]. Photochem Photobiol Sci, 2005, 4(11): 857-861.
    SREETHAWONG T, PUANGPETCH T, CHAVADEJ S, YOSHIKAWA S. Quantifying influence of operational parameters on photocatalytic H2 evolution over Pt-loaded nanocrystalline mesoporous TiO2 prepared by single-step sol-gel process with surfactant template[J]. J Power Sources, 2007, 165(2): 861-869.
    CHEN J, OLLIS D F, RULKENS W H, BRUNING H. Photocatalyzed oxidation of alcohols and organochlorides in the presence of native TiO2 and metallized TiO2 suspensions. Part (II): Photocatalytic mechanism[J]. Water Res, 1999, 33: 669-676.
    YOONG L S, CHONG F K. Development of copper-doped TiO2 photocatalyst for hydrogen production under visible light[J]. Energy, 2009, 34(10): 1652-1661.
    JIN Z L, ZHANG X J, LI Y X, LI S B, LU G X. 5.1% Apparent quantum efficiency for stable hydrogen generation over eosin-sensitized CuO/TiO2 photocatalyst under visible light irradiation[J]. Catal Commun, 2007, 8(8): 1267-1273.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1584) PDF downloads(773) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return