Volume 41 Issue 09
Sep.  2013
Turn off MathJax
Article Contents
XU Bing-qing, ZHANG Xiao-qing, LONG Hua-li, SHANG Shu-yong, YIN Yong-xiang. Hydrogen making from steam-carbon reaction catalyzed by K2CO3 with light irradiation heating[J]. Journal of Fuel Chemistry and Technology, 2013, 41(09): 1102-1107.
Citation: XU Bing-qing, ZHANG Xiao-qing, LONG Hua-li, SHANG Shu-yong, YIN Yong-xiang. Hydrogen making from steam-carbon reaction catalyzed by K2CO3 with light irradiation heating[J]. Journal of Fuel Chemistry and Technology, 2013, 41(09): 1102-1107.

Hydrogen making from steam-carbon reaction catalyzed by K2CO3 with light irradiation heating

  • Received Date: 2013-01-15
  • Rev Recd Date: 2013-03-04
  • Publish Date: 2013-09-30
  • With the simulated solar reaction system irradiated by Xenon lamp, an experiment of hydrogen making from steam-carbon reaction catalyzed by K2CO3 was carried out at about 700 ℃. It is found that the rate of hydrogen production with catalysts is 10 times more than that without catalysts, and there is no obvious difference in the rate of hydrogen production with the catalyst content from 10% to 20%. The oxygen-transfer mechanism for hydrogen making from steam-carbon reaction catalyzed by K2CO3 was discussed in detail, which was used to explain the unbalanced phenomenon of hydrogen and oxygen in reaction product. The efficiency of light energy conversion to chemical energy reaches to 13.12% in the experiment, which is better than that of photovoltaic method(10.85%). Some approaches for improving the energy conversion efficiency were proposed.
  • loading
  • STEINFELD A, WEIMER A W. Thermochemical production of fuels with concentrated solar energy[J]. Opt Express, 2010, 18(S1): A100-A111.
    ROMERO MANUEL, STEINFELD ALDO. Concentrating solar thermal power and thermochemical fuels[J]. Energy Environ Sci, 2012, 5(11): 9234-9245.
    SMESTAD G P, STEINFELD A. Review: Photochemical and thermochemical production of solar fuels from H2O and CO2 using metal oxide catalysts[J]. Ind Eng Chem Res, 2012, 51(37): 11828-11840.
    王宝辉, 吴红军, 刘淑芝, 盖翠萍. 太阳能分解水制氢技术研究进展[J]. 化工进展, 2006, 25(7): 733-738. (WANG Bao-hui, WU Hong-jun, LIU Shu-zhi, GAI Cui-ping. Advance on research of hydrogen production by solar water splitting[J]. Chemical Industry and Engineering Progress, 2006, 25(7): 733-738.)
    TRIBUTSCH H. Photovoltaic hydrogen generation[J]. Int J Hydrogen Energy, 2008, 33(21): 5911-5930.
    XIAO L, WU S Y, LI Y R. Advances in solar hydrogen production via two-step water-splitting thermochemical cycles based on metal redox reactions[J]. Renewable Energy, 2012, 41: 1-12.
    STAMATIOU A, LOUTZENHISER P G, STEINFELD A. Solar syngas production via H2O/CO2-splitting thermochemical cycles with Zn/ZnO and FeO/Fe3O4 redox reactions[J]. Chem Mater, 2010, 22(3): 851-859.
    祝星, 王华, 魏永刚, 李孔斋, 晏冬霞. 金属氧化物两步法化学循环分解水制氢化学进[J]. 2010, 22(5): 1010-1020. (ZHU Xing, WANG Hua, WEI Yong-gang, LI Kong-zhai, YAN Dong-xia. Hydrogen production by two-step water-splitting thermochemical cycle based on metal oxide redox System[J]. Progress in Chemistry, 2010, 22(5): 1010-1020.)
    NOBUYUKI G, TETSURO M, NOBUYUKI K, TATSUYA K. Thermochemical two-step water splitting by internally circulating fluidized bed of NiFe2O4 particles: Successive reaction of thermal-reduction and water-decomposition steps[J]. Int J Hydrogen Energy, 2011, 36(8): 4757-4767.
    WORNER A, TAMME R. CO2 reforming of methane in a solar driven volumetric receiver-reactor[J]. Catal Today, 1998, 46(2): 165-174.
    BUCK R, MUIR J F, HOGAN RE.Carbon dioxide reforming of methane in a solar volumetric receiver/reactor: The CAESAR project[J]. Sol Energy Mater, 1991, 24(1): 449-463.
    MUIR J, HOGAN R, SKOCYPEC R, BUCK R. Solar reforming of methane in a direct absorption catalytic reactor on a parabolic dish: I-Test and analysis[J]. Solar Energy, 1994, 52(6): 467-477.
    KODAMA T, KIYAMA A. Solar methane reforming using a new type of catalytically-activated metallic foam absorber[J]. J Sol Energy Eng, 2004, 126(2): 808-811.
    BERMAN A, KARN R K, EPSTEIN M. A new catalyst system for high-temperature solar reforming of methane[J]. Energy Fuels, 2006, 20(2): 455-462.
    WANG J, SAKANISHI K, SAITO I. High-yield hydrogen production by steam gasification of hypercoal (ash-free coal extract) with potassium carbonate:Comparison with raw coal[J]. Energy Fuels, 2005, 19(5): 2114-2120.
    金会心, 王华. 聚光太阳能加热昭通褐煤的气化试验研究[J]. 燃料化学学报, 2001, 29(6): 548-551. (JIN Hui-xin, WANG Hua. Gasification of Zhao tong Lignite Heated by Concentrated Solar Energy[J]. Journal of Fuel Chemistry and Technology, 2001, 29(6): 548-551.)
    WANG J, JIANG M Q, YAO Y H, ZHANG Y M, CAO J Q. Steam gasification of coal char catalyzed by K2CO3 for enhanced production of hydrogen with out formation of methane[J]. Fuel, 2009, 88(9): 1572-1579.
    MOULIJN J A, KAPTEIJN F. Towards a unified theory of reactions of carbon with oxygen-containing molecules[J]. Carbon, 1995, 33(8): 1155-1165.
    孙雪莲, 王黎, 张占涛. 煤气化复合催化剂研究及机理探讨[J]. 煤炭转化, 2006, 29(1): 15-18. (SUN Xue-lian, WANG Li, ZHANG Zhan-tao. Study on compound catalyst for gasification and its mechanism[J]. Coal conversion, 2006, 29(1): 15-18.)
    郝西维, 王黎, 吴嘉州. 煤温和气化技术研究进展[J]. 煤炭转化, 2008, 31(2): 83-89. (HAO Xi-wei, WANG Li, WU Jia-zhou. Progress of research on coal mild gasification[J]. Coal conversion, 2008, 31(2): 83-89.)
    徐秀峰, 顾永达, 陈诵英. 煤焦气化反应的影响因素和反应机理的研究进展[J]. 煤炭转化, 1996, 19(2): 48-53. (XU Xiu-feng, GU Yong-da, CHEN Song-ying. The study of influential factors to char gasification reaction and mechanism[J]. Coal conversion, 1996, 19(2): 48-53.)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1375) PDF downloads(903) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return