Volume 41 Issue 10
Oct.  2013
Turn off MathJax
Article Contents
LV Jian-yi, SHI Xiao-bin. Physicochemical properties and formation mechanism of soot during biomass burning[J]. Journal of Fuel Chemistry and Technology, 2013, 41(10): 1184-1190.
Citation: LV Jian-yi, SHI Xiao-bin. Physicochemical properties and formation mechanism of soot during biomass burning[J]. Journal of Fuel Chemistry and Technology, 2013, 41(10): 1184-1190.

Physicochemical properties and formation mechanism of soot during biomass burning

  • Received Date: 2013-01-15
  • Rev Recd Date: 2013-04-16
  • Publish Date: 2013-10-30
  • Cotton stalk and wood scraps were burnt in a tube furnace to generate soot under different combustion conditions. Soot particles were sampled and detected by TEM, EDS and GC-MS to study their physicochemical properties, then the formation mechanics of soot during biomass burning was deduced. The results show that the typical morphological structures of soot are capsule-like, spherical, catenulated and reticular. Combustion conditions enfluence the burning process and result in the different morphology of the soot. The soot particles collided and coagulated during nucleation and growth of soot, which leads to formation of complicated clustered particles. During biomass burning the soot is mainly generated from pyrolysis of cellulose, which contains furfurans, phenols, aldehydes, furans, alkanes and alkenes. The formation mechanics of soot has been speculated. During burning of biomass, the chemical bonds of cellulose fractured and restructured, which generate CO, CO2, residual carbon molecule fragments, and so on. Then residual carbon goes on a series of reactions such as reforming, dehydration, carbonization and bond-breaking to generate aldehydes and ketones. And these compounds polymerized and cyclized to form benzene ring structure, and further converted to toluenes and phenols.
  • loading
  • 于娜, 魏永杰, 胡敏, 曾立民, 张远航. 北京城区和郊区大气细粒子有机物污染特征及来源解析[J]. 环境科学学报, 2009, 29(2): 243-251.

    (YU Na, WEI Yong-jie, HU Min, ZENG Li-min, ZHANG Yuan-hang. Characterization and source identification of ambient organic carbon in PM2.5 in urban and suburban sites of Beijing[J]. Acta Scientiae Circumstantiae, 2009, 29(2): 243-251.)
    LIGHTY J S, VERANTH J M, SAROFIM A F. Combustion aerosols: Factors governing their size and composition and implications to human health[J]. J Air Waste Manage Assoc, 2009, 50(9): 1565-1611.
    DAVID M B, RAVID R. Deposition of fractal-like soot aggregates in the human respiratory tract[J]. J Aerosol Sci, 2011, 42(6): 372-386.
    RICHTER H, HOWARD J B. Formation of polycyclic aromatic hydrocarbons and their growth to soot-A review of chemical reaction pathways[J]. Prog Energy Combust Sci, 2000, 26(4/6): 565-608.
    吕建燚, 翁清龙. 乙烯/空气反扩散火焰中气体温度及碳烟体积分数的分布特征[J]. 化学学报, 2011, 69(8): 1011-1016.

    (LU Jian-yi, WENG Qing-long. Distribution characteristics of gas temperature and soot fraction volume in ethylene/air inverse diffusion flame[J]. Acta Chim Sinica, 2011, 69(8): 1011-1016.)
    SOMMERSACHER P, BRUNNER T, OBERNBERGER I. Fuel indexes: A novel method for the evaluation of relevant combustion properties of new biomass fuels[J]. Energy Fuels, 2012, 26(1): 380-390.
    FITZPATRICK E M, JONES J M, POURKASHANIAN M, ROSS A B, WILLIAMS A, BARTLE K D. Mechanistic aspects of soot formation from the combustion of pine wood[J]. Energy Fuels, 2008, 22(6): 3771-3778.
    MARICQ M M. Physical and chemical comparison of soot in hydrocarbon and biodiesel fuel diffusion flames: A study of model and commercial fuel[J]. Combust Flame, 2011, 158(1): 105-116.
    卓建坤, 李水清, 宋蔷, 姚强. 煤粉燃烧火焰区域中碳烟的结构和行为[J]. 燃烧科学与技术, 2009, 15(1): 74-81.

    (ZHUO Jian-kun, LI Shui-qing, Song Qiang, YAO Qiang. Structure and behavior of soot in pulverized-coal flame[J]. Journal of Combustion Science and Technology, 2009, 15(1): 74-81.)
    STANMORE B R, BRILHAC J F, GILOT P. The oxidation of soot: A review of experiments, mechanisms and models[J]. Carbon, 2001, 39(15): 2247-2268.
    TERESA B M, JACQUELINE M W, EMMA M F, JENNY M J, ALAN W. In situ study of soot from the combustion of a biomass pyrolysis intermediate-eugenol-and n-decane using aerosol time of flight mass spectrometry[J]. Energy Fuels, 2010, 24(1): 439-445.
    付鹏. 生物质热解气化气相产物释放特性和焦结构演化行为研究[D]. 华中科技大学博士论文, 2010: 1-151.

    (FU Peng. Study on gas release characteristics and char structural evolution duing pyrolysis and gasification of biomass[D]. Huazhong University of Science and Technology, 2010: 1-151.)
    DEMIRBAS A. An overview of biomass pyrolysis[J]. Energy Sources, 2002, 24(5): 471-482.
    KILZER R J, BROIDO A. Speculations on the nature of cellulose pyrolysis[J]. Pyrodynamics, 1965, 2: 151-163.
    ANTAL M J, FRIEDMAN H, ROGERS F E. Kinetic of cellulose pyrolysis in nitrogen and steam[J]. Combust Sci Technol, 1980, 21(3/4): 141-l52.
    许洁, 颜涌捷, 李文志, 王君, 陈明强. 生物质裂解机理和模型(I)—生物质裂解机理和工艺模式[J]. 化学与生物工程, 2007, 24(12): 1-4.

    (XU Jie, YAN Yong-jie, LI Wen-zhi, WANG Jun, CHEN Ming-qiang. Review of mechamism and model of bioss pyrolysis (I)-mechanism and technical patterns of biomass pyrolysis[J]. Chemistry and Bioengineering, 2007, 24(12): 1-4.)
    ONO H, YAMADA T. Cellulosic materials-potential source for adhesive[J]. Chem Adhesion, 2000, 74: 44-49.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1517) PDF downloads(690) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return