Volume 42 Issue 02
Feb.  2014
Turn off MathJax
Article Contents
WANG Xi-ming, ZHU Huai-li, WANG Xing-jun, LIU Hai-feng, YU Guang-suo, WANG Fu-chen. Transformation of K2CO3 as a catalyst during coal char pyrolysis and its effect on coal char catalytic gasification[J]. Journal of Fuel Chemistry and Technology, 2014, 42(02): 175-180.
Citation: WANG Xi-ming, ZHU Huai-li, WANG Xing-jun, LIU Hai-feng, YU Guang-suo, WANG Fu-chen. Transformation of K2CO3 as a catalyst during coal char pyrolysis and its effect on coal char catalytic gasification[J]. Journal of Fuel Chemistry and Technology, 2014, 42(02): 175-180.

Transformation of K2CO3 as a catalyst during coal char pyrolysis and its effect on coal char catalytic gasification

  • Received Date: 2013-06-28
  • Rev Recd Date: 2013-08-24
  • Publish Date: 2014-02-28
  • The transformation of K2CO3 in the course of Shenfu char catalytic pyrolysis under different temperatures was studied in the fixed-bed reactor; the influence of loading methods of K2CO3 and particle size on gasification reactivity was investigated in a TG-DSC analytical reactor. The results showed that with the increase of temperature, the effect of loading methods on gasification rate is weakened; K catalyst shows high dispersity by means of SEM/EDX analysis of pyrolysis residue. CO2 and CO are produced through the interaction of K2CO3 and coal char in the pyrolysis and there is a linear relation between the amount of released gas and temperature. The particle size of K2CO3 and coal char has notable impact on gasification; the gasification rate increase with a thinner particle at 650 ℃. K2CO3 shows high mobility within the coal char phase at elevated temperature, which is consistent with its catalytic activities; the effect of loading methods on gasification should be considered under a temperature below 700 ℃.
  • loading
  • HIGMAN C, van der BURGT M. Gasification. 2nd ed[M]. Amsterdam: Elsevier, 2008.
    WOOD B J, SANCIER K M. The mechanism of the catalytic gasification of coal char: A critical review[J]. Catal Rev Sci Eng, 1984, 26: 233-279.
    SHETH A C, SASTRY C, YEBOAH Y D, XU Y, AGARWAL P. Catalytic gasification of coal using eutectic salts: Reaction kinetics for hydrogasification using binary and ternary eutectic catalysts[J]. Fuel, 2004, 83(4/5): 557-572.
    杨景标, 蔡宁生, 李振山. 几种金属催化褐煤焦水蒸气气化的实验研究[J]. 中国电机工程学报, 2007, 27(26): 7-12. (YANG Jing-biao, CAI Ning-sheng, LI Zhen-shan. Experimental study on steam gasification of lignite char catalyzed by several metals[J]. Proceedings of the CSEE, 2007, 27(26): 7-12.)
    LEE W J, KIM S D. Catalytic activity of alkali and transition metal salt mixtures for steam-char gasification[J]. Fuel, 1995, 74(9): 1387-1393.
    陈凡敏, 王兴军, 王西明, 周志杰. 煤催化气化过程中钾的迁移及其对气化反应特性的影响[J]. 燃料化学学报, 2013, 41(3): 265-270. (CHEN Fan-min, WANG Xing-jun, WANG Xi-ming, ZHOU Zhi-jie. Transformation of potassium during catalytic gasification of coal and the effect on gasification[J]. Journal of Fuel Chemistry and Technology, 2013, 41(3): 265-270.)
    杨景标, 蔡宁生, 张彦文. 催化剂添加量对褐煤焦水蒸气气化反应性的影响[J]. 燃料化学学报, 2008, 36(1): 15-22. (YANG Jing-biao, CAI Ning-sheng, ZHANG Yan-wen. Effect of catalyst loading on the gasification reactivity of a lignite char with steam[J]. Journal of Fuel Chemistry and Technology, 2008, 36(1): 15-22.)
    WOOD B J, FLEMING R H, WISE H. Reactive intermediate in the alkali-carbonate-catalysed gasification of coal char[J]. Fuel, 1984, 63(11): 1600-1603.
    KARIMI A, GRAY M R. Effectiveness and mobility of catalysts for gasification of bitumen coke[J]. Fuel, 2011, 90(1): 120-125.
    殷宏彦. 碱金属碳酸盐对煤CO2气化反应性影响的研究[D]. 太原: 太原理工大学, 2010. (DUAN Hong-yan. Study on influence of alkali carbonates to gasification reactivity of coal with CO2[D]. Taiyuan: Taiyuan Science and Technology, 2010.)
    战书鹏, 王兴军, 洪冰清, 于广锁, 王辅臣. 褐煤催化加氢气化实验[J]. 燃料化学学报, 2012, 40(1): 8-14. (ZHAN Shu-peng, WANG Xing-jun, HONG Bing-qing, YU Guang-suo, WANG Fu-chen. Experimental study on catalytic hydrogasification of lignite[J]. Journal of Fuel Chemistry and Technology, 2012, 40(1): 8-14.)
    林荣英, 张济宇. 高变质程度无烟煤热天平水蒸气催化气化动力学碳酸钠催化剂[J]. 化工学报, 2006, 57(10): 2309-2318. (LIN Rong-yu, ZHANG Ji-yu. Catalytic gasification kinetics of high metamorphosed anthracites by steam in thermogravity (I) with sodium carbonate as catalyst[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(10): 2309-2318.)
    WANG J, KAKANISHI K, SAITO I. High-yield hydrogen production by steam gasification of hypercoal (ash-free coal extract) with potassium carbonate: Comparison with raw coal[J]. Energy Fuels, 2005, 19(5): 2114-2120.
    HUHN F, KLEIN J, JUNTGEN H. Investigations on the alkali-catalysed steam gasification of coal: Kinetics and interactions of alkali catalyst with carbon[J]. Fuel, 1983, 62(2): 196-199.
    SHARMA A, KAWASHIMA H, SAITO I, TAKANOHASHI T. Structural characteristics and gasification reactivity of chars prepared from K2CO3 mixed hypercoals and coals[J]. Energy Fuels, 2009, 23(4): 1888-1895.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (976) PDF downloads(673) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return