Volume 42 Issue 03
Mar.  2014
Turn off MathJax
Article Contents
LIU Xiao-fei, YOU Jing-lin, WANG Yuan-yuan, LU Li-ming, XIE Ying-fang, YU Li-wang, FU Qing. Raman spectroscopic study on the pyrolysis of Australian bituminous coal[J]. Journal of Fuel Chemistry and Technology, 2014, 42(03): 270-276.
Citation: LIU Xiao-fei, YOU Jing-lin, WANG Yuan-yuan, LU Li-ming, XIE Ying-fang, YU Li-wang, FU Qing. Raman spectroscopic study on the pyrolysis of Australian bituminous coal[J]. Journal of Fuel Chemistry and Technology, 2014, 42(03): 270-276.

Raman spectroscopic study on the pyrolysis of Australian bituminous coal

  • Received Date: 2013-10-27
  • Rev Recd Date: 2013-12-16
  • Publish Date: 2014-03-31
  • Raman spectroscopy was applied to investigate the temperature dependent pyrolysis of Australian bituminous coal from 298 to 1 473 K in argon and nitrogen atmospheres. The results indicated that the pyrolysis of Australian bituminous coal can be divided into three stages: 298~873 K, precipitation and volatilization of small molecule compounds (original in coal or decomposed by heat treatment); 873~1 273 K, cracking and volatilization of macromolecular compounds; 1 273~1 473 K, graphitization of coke. After annealing at 1 473 K, the ordered carbon content of coke is significantly related to the atmosphere of nitrogen or argon; nitrogen is conducive to the pyrolysis of coal. Annealing or holding time exhibits little effect on coal pyrolysis and coke structure evolution; however, long holding time is helpful for the volatilization of small molecules at low temperature.
  • loading
  • 张京. 金属氧化物对煤热解过程中多环芳烃排放的影响[D]. 太原: 太原理工大学, 2012. (ZHANG Jing. Influence of metal oxide on the emission of polycyclic aromatic hydrocarbons during coal pyrolysis[D]. Taiyuan: Taiyuan University of Technology, 2012.)
    KAWAKAMI M, KANBA K, SATO K, TAKENAKA T, GUPTA S, CHANDRATILLEKE R, SAHAJWALLA V. Characterization of thermal annealing effects on the evolution of coke carbon structure using Raman spectroscopy and X-ray diffraction[J]. ISIJ Int, 2008, 46(8): 1165-1170.
    赵丽红. 煤热解与气化反应性的研究[D]. 太原: 太原理工大学, 2007. (ZHAO Li-hong. Research of reactivities of coal during pyrolysis and gasification[J]. Taiyuan: Taiyuan University of Technology, 2007.)
    高晋生. 煤的热解、炼焦和煤焦油加工[M]. 北京: 化学工业出版社, 2009. (GAO Jin-sheng. The pyrolysis of coal, metallurgical and coal tar processing[M]. Beijing: Chemical Industry Press, 2009.)
    SONIBARE O O, HAEGER T, FOLEY S F. Structural characterization of Nigerian coals by X-ray diffraction Raman and FTIR spectroscopy[J]. Energy, 2010, 35(12): 5347-5353.
    SUGGATE R P, DICKINSON W W. Carbon NMR of coals: The effects of coal type and rank[J]. Int J Coal Geol, 2004, 57(1): 1-22.
    SAKAWA M, UNO K, HARA Y. E.s. r. study of formation of coke texture[J]. Fuel, 1983, 62(5): 585-590.
    TANG L, GUPTA R, SHENG C, WALL T. The char structure characterization from the coal reflectogram[J]. Fuel, 2005, 84(10): 1268-1276.
    FERRARI A C, ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Physical Review B, 2000, 61(20): 14095-14107.
    GUEDES A, VALENTIM B, PRIETO, RODRIGUES S, NORONHA F. Micro-Raman spectroscopy of collotelinite, fusinite and macrinite[J]. Int J Coal Geol, 2010, 83(4): 415-422.
    TUINSTRA F, KOENIG J L. Raman spectrum of graphite[J]. J Chem Phys, 1970, 53: 1126-1130.
    FRIEDEL R A, CARLSON G L. Difficult carbonaceous materials and their infra-red and Raman spectra. Reassignments for coal spectra[J]. Fuel, 1971, 51(3): 194-198.
    CUESTA A, DHAMELINCOURT P, LAUREYNS J, MARTINEZ-ALONSO A, TASCN J M D. Raman microprobe studies on carbon materials[J]. Carbon, 1994, 32(8): 1523-1532.
    MOCHIDA I, KORAI Y, FUJITSU H, TAKESHITA K, KOMATSUBARA Y, KOBA K, MARSH H. Aspects of gasification and structure in cokes from coals[J]. Fuel, 1984, 63(1): 136-139.
    JOHNSON C A, PATRICK J W, THOMAS K M. Characterization of coal chars by Raman spectroscopy, X-ray diffraction and reflectance measurements[J]. Fuel, 1986, 65(9): 1284-1290.
    JOHNSON C A, THOMAS K M. The thermal history of char samples taken from a gasifier[J]. Fuel, 1987, 66(1): 17-21.
    DONG S, ALVAREZ P, PATERSON N, DUGWELL D R, KANDIYOTI R. Study on the effect of heat treatment and gasification on the carbon structure of coal chars and metallurgical cokes using Fourier Transform Raman spectroscopy[J]. Energy Fuel, 2009, 23: 1651-1661.
    SHENG C D. Char structure characterized by Raman spectroscopy and its correlations with combustion reactivity[J]. Fuel, 2007, 86(15): 2316-2324.
    YOU J L, JIANG G C, XU K D. High temperature Raman spectra of sodium disilicate crystal, glass and its liquid[J]. J Non-Cryst Solids, 2001, 282(1): 125-131.
    YOU, J L, JIANG, G C, HOU, H Y, CHEN H, WU Y Q, XU K D. Quantum chemistry study on superstructure and Raman spectra of binary sodium silicates[J]. J Raman Spectrosc, 2005, 36(3): 237-249.
    KAWAKAMI M, KARATO T, TAKENAKA T, YOKOYAMA S. Structure analysis of coke, wood charcoal and bamboo charcoal by Raman spectroscopy and their reaction rate with CO2[J]. ISIJ Int, 2005, 45(7): 1027-1034.
    TUINSTRA F, KOENIG J K, Raman Spectrum of Graphite[J]. J Chem Phys, 1970, 53(3): 1126-1130.
    MEGARITIS A. Pyrolysis of coal maceral concentrates under pf-combustion conditions (I): Changes in volatile release and char combustibility as a function of rank[J]. Fuel, 1998, 77(12): 1273-1282.
    申峻, 王志忠. 不同煤阶煤炭化过程中挥发分组成及微孔变化的研究[J]. 煤炭学报, 2007, 32(6): 626-629. (SHEN Jun, WANG Zhi-zhong. Study on variation of micro-pores (<100 nm) and volatile components of different rank coals during carbonization[J]. Journal of China Coal Society, 2007, 32(6): 626-629.)
    MARQUES M, SUAREZ-RUIZ I, FLORES D, GUEDES A, RODRIGUES S. Correlation between optical, chemical and micro-structural parameters of high-rank coals and graphite[J]. Int J Coal Geol, 2009, 77(3/4): 377-382.
    GREEN P D, JOHNSON C A, THOMAS K M. Applications of laser Raman microprobe spectroscopy to the characterization of coals and cokes[J]. Fuel, 1983, 62(9): 1013-1023.
    CHABALALA V P, WAGNER N, POTGIETER-VERMAAK S. Investigation into the evolution of char structure using Raman spectroscopy in conjunction with coal petrography; Part 1[J]. Fuel Process Technol, 2011, 92(4): 750-756.
    MCCOWN M S, HARRISON D P. Pyrolysis and hydropyrolysis of Louisiana lignite[J]. Fuel, 1982, 61(11): 1149-1156.
    朱廷钰, 肖云汉, 王洋. 煤热解过程气体停留时间的影响[J]. 燃烧科学与技术, 2001, 7(3): 307-310. (ZHU Ting-yu, XIAO Yun-han, WANG Yang. Effect of gas residence time on coal pyrolysis[J]. Journal of Combustions Science and Technology, 2001, 7(3): 307-310.)
    WANG W, THOMAS K M, POULTNEY R M, WILLMERS R R. Iron catalyzed graphitization in the blast furnace[J]. Carbon, 1995, 33(11): 1525-1535.
    BUSTIN R M, ROSS J V, ROUZAUD J N. Mechanisms of graphite formation from kerogen: Experimental evidence[J]. Int J Coal Geol, 1995, 28(1): 1-36.
    徐秀峰, 崔洪, 顾永达, 陈诵英, 吴东. 煤焦制备条件对其气化反应性的影响[J]. 燃料化学学报, 1996, 24(5): 404-409. (XU Xiu-feng, CUI Hong, GU Yong-da, CHEN Song-ying, WU Dong. Influence of charring conditions of coal chars on their gasification reactivity by air[J]. Journal of Fuel Chemistry and Technology, 1996, 24(5): 404-409.)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1138) PDF downloads(848) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return