Volume 43 Issue 01
Jan.  2015
Turn off MathJax
Article Contents
HAO Rui-peng, YANG Peng-ju, WANG Zhi-jian, ZHU Zhen-ping. Effect of noble metals loaded TiO2 on the selectivity of photocatalytic CO2 reduction[J]. Journal of Fuel Chemistry and Technology, 2015, 43(01): 94-99.
Citation: HAO Rui-peng, YANG Peng-ju, WANG Zhi-jian, ZHU Zhen-ping. Effect of noble metals loaded TiO2 on the selectivity of photocatalytic CO2 reduction[J]. Journal of Fuel Chemistry and Technology, 2015, 43(01): 94-99.

Effect of noble metals loaded TiO2 on the selectivity of photocatalytic CO2 reduction

  • Received Date: 2014-09-25
  • Rev Recd Date: 2014-10-22
  • Publish Date: 2015-01-30
  • The TiO2 photocatalyst loaded with 1% Pt, Pd, Au, Ag have been prepared by photo deposition method. The catalysts are characterized with X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV-vis spectrometer. The electro-catalytic performance for hydrogen production and photo electrochemical performance are investigated by using linear sweep voltammetry method and continuous transient current-time response method. The performance of photocatalytic CO2 reduction on TiO2 loaded with different noble metals are discussed. The results show that loading noble metal on TiO2 can significantly accelerate the separation of photo production electron and hole and reduce the recombination rate. Furthermore, the sequence of cocatalysts selective reduction for CO2 is Ag>Au>Pd>Pt. A negative correlation between the selectivity of CO2 hydrogenation and hydrogen production has been discovered. The cocatalyst which has advantage to hydrogen evolution process goes against the selectivity of CO2 hydrogenation.
  • loading
  • FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38.
    INOUE T, FUJISHIMA A, KONISHI S, HONDA K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders[J]. Nature, 1979, 277(5698): 637-638.
    NAVALÓN S, DHAKSHINAMOORTHY A, ÁLVARO M, GARCIA H. Photocatalytic CO2 reduction using non-titanium metal oxides and sulfides[J]. ChemSusChem, 2013, 6(4): 562-577.
    HABISREUTINGER S N, SCHMIDT-MENDE L, STOLARCZYK J K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors[J]. Angew Chem Int Ed, 2013, 52(29): 7372-7408.
    ZHAI Q G, XIE S J, FAN W Q, ZHANG Q H, WANG Y, DENG W P, WANG Y. Photocatalytic conversion of carbon dioxide with water into methane: Platinum and copper(i) oxide co-catalysts with a core-shell structure[J]. Angew Chem Int Ed, 2013, 52(22): 5776-5779.
    TU W G, ZHOU Y, ZOU Z G. Photoconversion: Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: State-of-the-art accomplishment, challenges, and prospects[J]. Adv Mat, 2014, 26(27): 4598-4598.
    IIZUKA K, WATO T, MISEKI Y, SAITO K, KUDO A. Photocatalytic reduction of carbon dioxide over Ag cocatalyst-loaded ALa4Ti4O15(A=Ca, Sr, and Ba) using water as a reducing reagent[J]. J Am Chem Soc, 2011, 133(51): 20863-20868.
    ZHOU H, GUO J J, LI P, FAN T X, ZHANG D, YE J H. Leaf-architectured 3D hierarchical artificial photosynthetic system of perovskite titanates towards CO2 photoreduction into hydrocarbon fuels[J]. Sci Rep, 2013, 3: 1667.
    HE J H, ICHINOSE I, KUNITAKE T, NAKAO A. In situ synthesis of noble metal nanoparticles in ultrathin TiO2-Gel films by a combination of ion-exchange and reduction processes[J]. Langmuir, 2002, 18(25): 10005-10010.
    LIU Z W, HOU W B, PAVASKAR P, AYKOL M, CRONIN S B. Plasmon resonant enhancement of photocatalytic water splitting under visible illumination[J]. Nano Lett, 2011, 11(3): 1111-1116.
    YUI T, KAN A, SAITOH C, KOIKE K, IBUSUKI T, ISHITANI O. Photochemical reduction of CO2 Using TiO2: Effects of organic adsorbates on TiO2 and deposition of Pd onto TiO2[J]. Acs Appl Mat Int, 2011, 3(7): 2594-2600.
    INDRAKANTI V P, KUBICKI J D, SCHOBERT H H. Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook[J]. Energy Environ Sci, 2009, 2(7): 745-758.
    IKEDA S, TAKAGI T, ITO K. Selective formation of formic-acid, oxalic-acid, and carbon-monoxide by electrochemical reduction of carbon-dioxide[J]. Bull Chem Soc Jpn, 1987, 60(7): 2517-2522.
    YANG J H, WANG D G, HAN H X, LI C.Roles of cocatalysts in photocatalysis and photoelectrocatalysis[J]. Acc Chem Res, 2013, 46(8): 1900-1909.
    PETERSON A A, NORSKOV J K. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts[J]. J Phys Chem Lett, 2012, 3(2): 251-258.
    HORI Y, WAKEBE H, TSUKAMOTO T, KOGA O. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal-electrodes in aqueous-media[J]. Electrochim Acta, 1994, 39(11/12): 1833-1839.
    WANG W N, AN W J, RAMALINGAM B, MUKHERJEE S, NIEDZWIEDZKI D M, GANGOPADHYAY S, BISWAS P. Size and structure matter: Enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals[J]. J Am Chem Soc, 2012, 134(27): 11276-11281.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (456) PDF downloads(742) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return