Volume 43 Issue 02
Feb.  2015
Turn off MathJax
Article Contents
YIN Yan-shan, WANG Ze-zhong, TIAN Hong, ZHANG Wei, HE Jin-qiao, LIU Liang, YAN Xiao-zhong. Evolution of mineral matter and carbonaceous structure during lignocellulosic municipal solid waste pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2015, 43(02): 160-166.
Citation: YIN Yan-shan, WANG Ze-zhong, TIAN Hong, ZHANG Wei, HE Jin-qiao, LIU Liang, YAN Xiao-zhong. Evolution of mineral matter and carbonaceous structure during lignocellulosic municipal solid waste pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2015, 43(02): 160-166.

Evolution of mineral matter and carbonaceous structure during lignocellulosic municipal solid waste pyrolysis

  • Received Date: 2014-09-18
  • Rev Recd Date: 2014-12-03
  • Publish Date: 2015-02-28
  • Two lignocellulosic municipal solid wastes including waste paper and camphor tree leaf were pyrolyzed at temperatures of 500~1 000 ℃ in a horizontal tube furnace. The mineral matter and carbonaceous structure of both municipal solid wastes were characterized by X-ray diffraction (XRD) and Raman spectroscopy, respectively. The evolution of mineral matter and carbonaceous structure during pyrolysis was investigated. The results demonstrate that the original mineral matter in waste paper and camphor tree leaf is principally calcite and weddellite, respectively. Weddellite can completely decompose to calcite below 500 ℃, and then turn to lime above 800 ℃. In addition, Raman spectroscopy is found to be considerably sensitive to the carbonaceous structure of municipal solid wastes. At relatively low temperatures, the macromolecules of municipal solid wastes are subjected to the condensation and depolymerization, resulting in an increase in the amount of isolated sp2 carbon, thus the D1 band full width at half maximum (FWHM) and band area ratio ID1/IG increase with increasing pyrolysis temperature. In contrast, at relatively high temperatures, the D1 band FWHM and ID1/IG decrease, which is attributed to the increase of ordered sp2 carbon. Consequently, the order of carbonaceous structure of both municipal solid wastes shows an initial decrease and then an increase with the increasing of pyrolysis temperature.
  • loading
  • 国家环境保护部. 2013年中国环境状况公报[EB/OL]. http://jcs.mep.gov.cn/hjzl/zkgb/2013zkgb/201406/t20140605_276485.htm, 2014-06-05. (Ministry of Enivironmental Protection of the People’s Rupublic of China[EB/OL]. 2013 report on the state of the enivironment in China. http://jcs.mep.gov.cn/hjzl/zkgb/2013zkgb/201406/t20140605_276485.htm, 2014-06-05.)
    DE SOUZA-SANTOS M L, CERIBELI K. Technical evaluation of a power generation process consuming municipal solid waste[J]. Fuel, 2013, 108: 578-585.
    王志奇, 陈勇. 垃圾衍生燃料等温快速热解和燃烧反应特性[J]. 燃料化学学报, 2004, 32(4): 440-445. (WANG Zhi-qi, CHEN Yong. Pyrolysis and combustion characteristics of RDF at isothermal condition[J]. J Fuel Chem Technol, 2004, 32(4): 440-445.)
    袁浩然, 鲁涛, 熊祖鸿, 黄宏宇, 小林敬幸, 陈勇, 黎志强. 城市生活垃圾热解气化技术研究进展[J]. 化工进展, 2012, 31(2): 421-427. (YUAN Hao-ran, LU Tao, XIONG Zu-hong, HUANG Hong-yu, KOBAYASHI Noriyuku, CHEN Yong, LI Zhi-qiang. Advance in pyrolysis and gasification of municipal solid waste study[J]. Chem Ind Eng Prog, 2012, 31(2): 421-427.)
    李斌, 谷月玲, 严建华, 徐旭, 池涌, 蒋旭光, 倪明江, 岑可法. 城市生活垃圾典型组分的热解动力学模型研究[J]. 环境科学学报, 1999, 19(5): 562-566. (LI Bin, GU Yue-ling, YAN Jian-hua, XU Xu, CHI Yong, JIANG Xu-guang, NI Ming-jiang, CEN Ke-fa. Thermal decomposition kinetics model of the representative composition of municipal solid waste[J]. Acta Sci Circumstantiae, 1999, 19(5): 562-566.)
    王艳, 张书廷, 张于峰, 王洋, 邓娜. 城市生活垃圾低温热解产气特性的实验研究[J]. 燃料化学学报, 2005, 33(1): 62-67. (WANG Yan, ZHANG Shu-ting, ZHANG Yu-feng, WANG Yang, DENG Na. Gas formation characteristics during low temperature pyrolysis of municipal household garbage[J]. J Fuel Chem Technol, 2005, 33(1): 62-67.)
    李帆, 邱建荣, 郑瑛, 郑楚光. 煤燃烧过程矿物质行为研究[J]. 工程热物理学报, 1999, 20(2): 258-260. (LI Fan, QIU Jian-rong, ZHENG Ying, ZHENG Chu-guang. Study on behavior of mineral matters in coal during burning process[J]. J Eng Thermophysics, 1999, 20(2) : 258-260.)
    张守玉, 黄凤豹, 彭定茂, 董刚, 宝田恭之. 低品质生物质的热解及低温催化气化研究[J]. 燃料化学学报, 2013, 41(2): 163-168. (ZHANG Shou-yu, HUANG Feng-bao, PENG Ding-mao, DONG Gang, TAKARADA Takayuki. Pyrolysis and low temperature catalytic gasification of manure[J]. J Fuel Chem Technol, 2013, 41(2): 163-168.)
    SHENG C D. Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity[J]. Fuel, 2007, 86(15): 2316-2324.
    LU L, KONG C, SAHAJWALLA V, HARRIS D. Char structural ordering during pyrolysis and combustion and its influence on char reactivity[J]. Fuel, 2002, 81(9): 1215-1225.
    范晓雷, 杨帆, 张薇, 周志杰, 王辅臣, 于遵宏. 热解过程中煤焦微晶结构变化及其对煤焦气化反应活性的影响[J]. 燃料化学学报, 2006, 34(4): 395-398. (FAN Xiao-lei, YANG Fan, ZHANG Wei, ZHOU Zhi-jie, WANG Fu-chen, YU Zun-hong. Variation of the crystalline structure of coal char during pyrolysis and its effect on gasification reactivity[J]. J Fuel Chem Technol, 2006, 34(4): 395-398.)
    LI X, HAYASHI J I, LI C Z. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal[J]. Fuel, 2006, 85(12/13): 1700-1707.
    YAMAUCHI S, KURIMOTO Y. Raman spectroscopic study on pyrolyzed wood and bark of Japanese cedar: Temperature dependence of Raman parameters[J]. J Wood Sci, 2003, 49(3): 235-240.
    柳晓飞, 尤静林, 王媛媛, LU Li-ming, 解迎芳, 余立旺, 伏清. 澳大利亚烟煤热解的拉曼光谱研究[J]. 燃料化学学报, 2014, 42(3): 270-276. (LIU Xiao-fei, YOU Jing-lin, WANG Yuan-yuan, LU Li-ming, XIE Ying-fang, YU Li-wang, FU Qing. Raman spectroscopic study on the pyrolysis of Australian bituminous coal[J]. J Fuel Chem Technol, 2014, 42(3): 270-276.)
    陈港, 刘雅萍, 方志强. 钛白粉-碳酸钙复合填料的制备及在造纸中的应用[J]. 华南理工大学学报(自然科学版), 2011, 39(8): 87-92. (CHEN Gang, LIU Ya-ping, FANG Zhi-qiang. Preparation of calcium carbonate composite filler coated with titanium dioxide and its application in papermaking[J]. J South Chin Univ Technol (Nat Sci Ed), 2011, 39(8): 87-92.)
    OBOIRIEN B, ENGELBRECHT A, NORTH B, DU CANN V M, VERRYN S, FALCON R. Study on the structure and gasification characteristics of selected South African bituminous coals in fluidised bed gasification[J]. Fuel Process Technol, 2011, 92(4): 735-742.
    IBARRA J, PALACIOS J, DE ANDRS A M. Analysis of coal and char ashes and their ability for sulphur retention[J]. Fuel, 1989, 68(7): 861-867.
    SILVA L F O, SAMPAIO C H, GUEDES A, FDEZ-ORTIZ DE VALLEJUELO S, MADARIAGA J M. Multianalytical approaches to the characterisation of minerals associated with coals and the diagnosis of their potential risk by using combined instrumental microspectroscopic techniques and thermodynamic speciation[J]. Fuel, 2012, 94: 52-63.
    BAR-ZIV E, ZAIDA A, SALATINO P, SENNECA O. Diagnostics of carbon gasification by Raman microprobe spectroscopy//Proceedings of the Combustion Institute, 2000, 2369-2374.
    XU M Z, SHENG C D. Influences of the heat-treatment temperature and inorganic matter on combustion characteristics of cornstalk biochars[J]. Energy Fuels, 2012, 26(1): 209-218.
    JONES S P, FAIN C C, EDIE D D. Structural development in mesophase pitch based carbon fibers produced from naphthalene[J]. Carbon, 1997, 35(10/11): 1533-1543.
    TUINSTRA F, KOENIG J L. Raman spectrum of graphite[J]. J Chem Phys, 1970, 53(3): 1126-1130.
    IVLEVA N P, MESSERER A, YANG X, NIESSNER R, POSCHL U. Raman microspectroscopic analysis of changes in the chemical structure and reactivity of soot in a diesel exhaust aftertreatment model system[J]. Environ Sci Technol, 2007, 41(10): 3702-3707.
    JAWHARI T, ROID A, CASADO J. Raman spectroscopic characterization of some commercially available carbon black materials[J]. Carbon, 1995, 33(11): 1561-1565.
    ISHIMARU K, HATA T, BRONSVELD P, NISHIZAWA T, IMAMURA Y. Characterization of sp2- and sp3-bonded carbon in wood charcoal[J]. J Wood Sci, 2007, 53(5): 442-448.
    ZICKLER G A, SMARSLY B, GIERLINGER N, PETERLIK H, PARIS O. A reconsideration of the relationship between the crystallite size La of carbons determined by X-ray diffraction and Raman spectroscopy[J]. Carbon, 2006, 44(15): 3239-3246.
    MORGA R. Micro-Raman spectroscopy of carbonized semifusinite and fusinite[J]. Int J Coal Geology, 2011, 87(3/4): 253-267.
    RHIM Y R, ZHANG D, FAIRBROTHER D H, WEPASNICK K A, LIVI K J, BODNAR R J, NAGLE D C. Changes in electrical and microstructural properties of microcrystalline cellulose as function of carbonization temperature[J]. Carbon, 2010, 48(4): 1012-1024.
    FERRARI A C, ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Phys Rev B, 2000, 61(20): 14095-14107.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (387) PDF downloads(539) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return