Volume 43 Issue 02
Feb.  2015
Turn off MathJax
Article Contents
TIAN Hui-yun, HU Bin, ZHANG Yang, LU Qiang, DONG Chang-qing, YANG Yong-ping. Mechanism for the formation of hydroxyacetaldehyde by the pyrolysis of xylopyranose and O-acetyl-xylopyranose[J]. Journal of Fuel Chemistry and Technology, 2015, 43(02): 185-194.
Citation: TIAN Hui-yun, HU Bin, ZHANG Yang, LU Qiang, DONG Chang-qing, YANG Yong-ping. Mechanism for the formation of hydroxyacetaldehyde by the pyrolysis of xylopyranose and O-acetyl-xylopyranose[J]. Journal of Fuel Chemistry and Technology, 2015, 43(02): 185-194.

Mechanism for the formation of hydroxyacetaldehyde by the pyrolysis of xylopyranose and O-acetyl-xylopyranose

  • Received Date: 2014-08-09
  • Rev Recd Date: 2014-10-09
  • Publish Date: 2015-02-28
  • Xylopyranose and O-acetyl-xylopyranose, the two monomers of xylan, were employed as the model compounds to study the mechanism for the formation of hydroxyacetaldehyde (HAA) from xylan by pyrolysis. Six possible pathways from xylopyranose and three from O-acetyl-xylopyranose were proposed by employing the density functional theory (DFT) at B3LYP/6-31+G(d,p) level; the energetically favored pathways for HAA formation were revealed. Xylopyranose may undergo ring-opening, dehydration, rearrangement and retro-aldol reactions sequentially, to form HAA that contains C4/C5; the rate-determining step is the dehydration reaction, with an energy barrier of 253.3 kJ/mol. From O-acetyl-xylopyranose, the side chain is cleaved in the first place, forming acetic acid (AA) and a cyclic intermediate; the ring-opening and H-shift reactions happen afterwards from the cyclic intermediate to generate HAA containing C4/C5; the rate-determining step is the H-shif reaction, with an energy barrier of 317.6 kJ/mol.
  • loading
  • BRIDGWATER A V, PEACOCKE G V C. Fast pyrolysis processes for biomass[J]. Renew Sust Energy Rev, 2000, 4(1): 1-73.
    MOHAN D, PITTMAN C U, STEELE P H. Pyrolysis of wood/biomass for bio-oil: A critical review[J]. Energy Fuel, 2006, 20(3): 848-889.
    VENDERBOSCH R H, PRINS W. Fast pyrolysis technology development[J]. Biofuels Bioprod Bioref, 2010, 4(2): 178-208.
    WANG S, LIANG T, RU B, GUO X. Mechanism of xylan pyrolysis by Py-GC/MS[J]. Chem Res Chin Univ, 2013, 29(4): 782-787.
    PONDER G R, RICHARDS G N. The synthesis and pyrolysis of a xylan[J]. Carbohydr Res, 1991, 211(1): 143-145.
    刘利军, 蒋剑春, 黄海涛. 木聚糖CP-GC-MS法裂解行为研究[J]. 林业化学与工业, 2010, 30(1): 1-6. (LIU Li-jun, JIANG Jian-chun, HUANG Hai-tao. Study on curie-point pyrolysis of xlan under CP-GC-MS conditions[J]. Chem Ind For Prod, 2010, 30(1): 1-6.)
    SHEN D K, GU S, BRIDGWATER A V. Study on the pyrolytic behaviour of xylan-based hemicellulose using TG-FTIR and Py-GC-FTIR[J]. J Anal Appl Pyrolysis, 2010, 87(2): 199-206.
    PISKORZ J, RADLEIN D, SCOOT D S. On the mechanism of the rapid pyrolysis of cellulose[J]. J Anal Appl Pyrolysis, 1986, 9(2): 121-137.
    陆强, 廖航涛, 张阳, 张俊姣, 董长青. 果糖低温快速热解制备5-羟甲基糠醛的机理研究[J]. 燃料化学学报, 2013, 41(9): 1071-1076. (LU Qiang, LIAO Hang-tao, ZHANG Yang, ZHANG Jun-jiao, DONG Chang-qing. Reaction mechanism of low-temperature fast pyrolysis of fructose to produce 5-hydroxymethyl furfural[J]. J Fuel Chem Technol, 2013, 41(9): 1071-1076.)
    ZHANG X, YANG W, DONG C. Levoglucosan formation mechanisms during cellulose pyrolysis[J]. J Anal Appl Pyrolysis, 2013, 104: 19-27.
    黄金保, 刘朝, 任丽荣, 童红, 李伟民, 伍丹. 木质素模化物紫丁香酚热解机理的量子化学研究[J]. 燃料化学学报, 2013, 41(6): 657-666. (HUANG Jin-bao, LIU Chao, REN Li-rong, TONG Hong, LI Wei-min, WU Dan. Studies on pyrolysis mechanism of syringol as lignin model compound by quantum chemistry[J]. J Fuel Chem Technol, 2013, 41(6): 657-666.)
    张智, 刘朝, 李豪杰, 黄金宝, 黄晓露. 木聚糖单体热解机理的理论研究[J]. 化学学报, 2011, 69(18): 2099-2107. (ZHANG Zhi, LIU Chao, LI Hao-jie, HUANG Jin-bao, HUANG Xiao-lu. Theoretical studies of pyrolysis mechainsm of xylan monomer[J]. J Chin Chem Soc, 2011, 69(18): 2099-2107.)
    HUANG J, LIU C, TONG H, LI W, WU D. Theoretical studies on pyrolysis mechanism of xylopyranose[J]. Comput Theor Chem, 2012, 1001: 44-50.
    黄金保, 刘朝, 童红, 李伟民, 伍丹. O-乙酰基-吡喃木糖热解反应机理的理论研究[J]. 燃料化学学报, 2013, 41(3): 285-293. (HUANG Jin-bao, LIU Chao, TONG Hong, LI Wei-min, WU Dan. Theoretical studies on pyrolysis mechanism of O-acetyl-xylopyranose[J]. J Fuel Chem Technol, 2013, 41(3): 285-293.)
    ZHANG X, LI J, YANG W, BLASIAK W. Formation mechanism of levoglucosan and formaldehyde during cellulose pyrolysis[J]. Energy Fuels, 2011, 25(8): 3739-3746.
    WANG S, GUO X, LIANG T, ZHOU Y, LUO Z. Mechanism research on cellulose pyrolysis by Py-GC/MS and subsequent density functional theory studies[J]. Bioresour Technol, 2012, 104: 722-728.
    PARTHASARATHI R, ROMERO R A, REDONDO A, GNANAKARAN S. Theoretical study of the remarkably diverse linkages in lignin[J]. Chem Phys Lett, 2011, 2(20): 2660-2666.
    KIM S, CHMELY S C, NIMLOS M R, BOMBLE Y J, FOUST T D, PATON R S, BECKHAM G T. Computational study of bond dissociation enthalpies for a large range of native and modified lignins[J]. Chem Phys Lett, 2011, 2(22): 2846-2852.
    WANG S, RU B, LIN H, LUO Z. Degradation mechanism of monosaccharides and xylan under pyrolytic conditions with theoretic modeling on the energy profiles[J]. Bioresour Technol, 2013, 143: 378-383.
    BECKE A D. Density-functional thermochemistry. III. The role of exact exchange[J]. J Chem Phys, 1993, 98(7): 5648-5652.
    MIEHLICH B, SAVIN A, STOLL H, PREUSS H. Results obtained with the correlation energy density functionals of Becke and Lee, yang and Parr[J]. Chem Phys Lett, 1989, 157(3): 200-206.
    LYNCH B J, TRUHLAR D G. How well can hybrid density functional methods predict transition state geometries and barrier heights[J]. J Phys Chem A, 2001, 105(13): 2936-2941.
    ZHANG X, YANG W, BLASIAK W. Thermal decomposition mechanism of levoglucosan during cellulose pyrolysis[J]. J Anal Appl Pyrolysis, 2012, 96: 110-119.
    ZHANG X, YANG W, BLASIAK W. Kinetics study on thermal dissociation of levoglucosan during cellulose pyrolysis[J]. Fuel, 2013, 109: 476-483.
    WONG M W. Vibrational frequency prediction using density functional theory[J]. Chem Phys Lett, 1996, 256(4/5): 391-399.
    GONZALEZ C, SCHLEGEL H B. An improved algorithm for reaction path following[J]. J Chem Phys, 1989, 90(4): 2154-2161.
    FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 03, Pittsburgh PA: Guassian, Inc, 2003.
    NIMLOS M R, BLANKSBY S J, ELLISON G B, EVANS R J. Enhancement of 1,2-dehydration of alcohols by alkali cations and protons: A model for dehydration of carbohydrates[J]. J Anal Appl Pyrolysis, 2003, 66(1/2): 3-27.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (503) PDF downloads(392) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return