Volume 43 Issue 08
Aug.  2015
Turn off MathJax
Article Contents
CAO Xiao-feng, ZHANG Qi, JIANG Dong, LIU Qi-ying, MA Long-long, WANG Tie-jun, LI De-bao. Influence of calcination temperature on the performance of Ni/La(III) catalyst in the hydrogenolysis of sorbitol to low-carbon glycols[J]. Journal of Fuel Chemistry and Technology, 2015, 43(08): 970-979.
Citation: CAO Xiao-feng, ZHANG Qi, JIANG Dong, LIU Qi-ying, MA Long-long, WANG Tie-jun, LI De-bao. Influence of calcination temperature on the performance of Ni/La(III) catalyst in the hydrogenolysis of sorbitol to low-carbon glycols[J]. Journal of Fuel Chemistry and Technology, 2015, 43(08): 970-979.

Influence of calcination temperature on the performance of Ni/La(III) catalyst in the hydrogenolysis of sorbitol to low-carbon glycols

  • Received Date: 2015-01-26
  • Rev Recd Date: 2015-03-23
  • Publish Date: 2015-08-30
  • Nanorod-shaped La(OH)3 support was prepared by hydrothermal method, over which the supported Ni/La(III) catalysts were obtained through wet impregnation method; the influence of calcination temperature on the performance of Ni/La(III) catalyst in the hydrogenolysis of sorbitol to low-carbon glycols was then investigated by means of XRD, SEM/EDS, BET, H2-TPR-MS, CO/CO2-TPD-MS, ICP-AES and TG. The results revealed that the Ni/La(III) catalysts are highly active for sorbitol hydrogenolysis; the yield of low-carbon glycols reaches 53% after reaction at 220℃ and 4 MPa H2 for 1.5 h. The catalyst calcined at low temperature (500℃) is mainly in the form of NiO/La2O2CO3, which may transform into La2NiO4-La2O3 with the increase of calcination temperature. The basicity is a crucial factor for the hydrogenolysis activity; high calcionation temperature may enhance the basicity of the catalysts and then improve their hydrogenolysis activity, whereas the calcination temperature has little effect on the products selectivity. However, NiO/La2O2CO3 exhibits better hydrothermal stability than La2NiO4-La2O3 for sorbitol hydrogenolysis. The deactivation of catalysts can be attributed to the separation of active Ni particles from the support and the agglomeration of the active species, which may reduce the amount of the active metal sites and destroy the catalyst structure.
  • loading
  • HUBER G W, IBORRA S, CORMA A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering[J]. Chem Rev, 2006, 106(9): 4044-4098.
    The Pacific Northwest National Laboratory (PNNL), the National Renewable Energy Laboratory (NREL). Top value added chemicals from biomass[Z]. 2004.
    CORMA A, IBORRA S, VELTY A. Chemical routes for the transformation of biomass into chemicals[J]. Chem Rev, 2007, 107(6): 2411-2502.
    KOBAYASHI H, HOSAKA Y, HARA K, FENG B, HIROSAKI Y, FUKUOKA A. Control of selectivity, activity and durability of simple supported nickel catalysts for hydrolytic hydrogenation of cellulose[J]. Green Chem, 2014, 16(2): 637-644.
    JIN X, JESSICA L, BALA S, REN S Q, RAGHUNATH V C. Lattice-matched bimetallic CuPd-graphene nanocatalysts for facile conversion of biomass-derived polyols to chemicals[J]. ACS Nano, 2012, 7(2): 1309-1316.
    AGNIESZKA M R, KAMIL W, REGINA P. Hydrogenolysis goes bio: From carbohydrates and sugar alcohols to platform chemicals[J]. Angew Chem, 2012, 51(11): 2564-2601.
    马继平, 于维强, 王敏, 贾秀全, 路芳, 徐杰. 催化选择转化多羟基化合物制备商附加值化学品研究进展[J]. 催化学报, 2013, 34(3): 492-507. (MA Ji-ping, YU Wei-qing, WANG Min, JIA Xiu-quan, LU Fang, XU Jie. Advances in selective catalytic transformation of ployols to value-added chemicals[J]. Chin J Catal, 2013, 34(3): 492-507.)
    刘琪英, 廖玉河, 石宁, 王铁军, 马隆龙, 张琦. 生物质多元醇选择性催化氢解制小分子二元醇研究进展[J]. 化工进展, 2013, 32(5): 1035-1042. (LIU Qi-ying, LIAO Yu-he, SHI Ning, WANG Tie-jun, MA Long-long, ZHANG Qi. A review on small molecular diols production by catalytic hydrogenolysis of biomass derived polyols[J]. Chem Ind Eng Prog, 2013, 32(5): 1035-1042.)
    KEYI W, MARTIN C H, TODD D F. Mechanism study of sugar and sugar alcohol hydrogenolysis using 1,3-diol model compounds[J]. Ind Eng Chem Res, 1995, 34(11): 3766-3771.
    SOHOUNLOUE D K, MONTASSIER C, BARBIER J. Catalytic hydrogenolysis of sorbitol[J]. React Kinet Catal Lett, 1983, 22(3/4): 391-397.
    BANU M, SIVASANKER S, SANKARANARAYANAN T M, VENUVANALINGAM P. Hydrogenolysis of sorbitol over Ni and Pt loaded on NaY[J]. Catal Commun, 2011, 12(7): 673-677.
    BANU M, VENUVANALINGAM P, SHANMUGAM R, VISWANATHAN B, SIVASANKER S. Sorbitol hydrogenolysis over Ni, Pt and Ru supported on NaY[J]. Top Catal, 2012, 5511/13): 897-907.
    ZHAO L, ZHOU J H, SUI Z J, ZHOU X G. Hydrogenolysis of sorbitol to glycols over carbon nanofiber supported ruthenium catalyst[J]. Chem Eng Sci, 2010, 65(1): 30-35.
    ZHAO L, ZHOU J H, CHEN H, ZHANG M G, SUI Z J, ZHOU X G. Carbon nanofibers supported Ru catalyst for sorbitol hydrogenolysis to glycols: Effect of calcination[J]. Korean J Chem Eng, 2010, 27(5): 1412-1418.
    ZHOU J H, ZHANG M G, ZHAO L, ZHOU J H. Carbon nanofiber/graphite-felt composite supported Ru catalysts for hydrogenolysis of sorbitol[J]. Catal Today, 2009, 147(S): 225-229.
    CHEN X G, WANG X C, YAO S X, MU X D. Hydrogenolysis of biomass-derived sorbitol to glycols and glycerol over Ni-MgO catalysts [J]. Catal Commun, 2013, 39(5): 86-89.
    HUANG Z W, CHEN J, JIA Y Q, LIU H L, XIA C G, LIU H C. Selective hydrogenolysis of xylitol to ethylene glycol and propylene glycol over copper catalysts[J]. Appl Catal B: Environ, 2014, 147: 377-386.
    SUN J Y, LIU H C. Selective hydrogenolysis of biomass-derived xylitol to ethylene glycol and propylene glycol on Ni/C and basic oxide-promoted Ni/C catalysts[J]. Catal Today, 2014, 234: 75-82.
    LIU H L, HUANG Z W, XIA C G, JIA Y Q, CHEN J, LIU H C. Selective hydrogenolysis of xylitol to ethylene glycol and propylene glycol over silica dispersed copper catalysts prepared by a precipitation-gel method[J]. ChemCatChem, 2014, 10(6): 2918-2928.
    SUN H, DING Y Q, DUAN J Z, ZHANG Q J, WANG Z Y, LOU H, ZHENG X M Transesterification of sunflower oil to biodiesel on ZrO2 supported La2O3 catalyst[J]. Bioresour Technol, 2010, 101(3): 953-958.
    YANG G X, YU H, HUANG X Y, PENG F, WANG H J. Effect of calcium dopant on catalysis of Ir/La2O3 for hydrogen production by oxidative steam reforming of glycerol[J]. Appl Catal B: Environ, 2012, 127: 89-98.
    ROELOFS J C A A, LENSVELD D J, DILLEN A J, JONG K P. On the structure of activated hydrotalcites as solid base catalysts for liquid-phase aldol condensation[J]. J Catal, 2001, 203(1): 184-191.
    GAO J, HOU Z Y, GUO J Z, ZHU Y H, ZHENG X M. Catalytic conversion of methane and CO2 to synthesis gas over a La2O3-modified SiO2 supported Ni catalyst in fluidized-bed reactor[J]. Catal Today, 2008, 131(1/4): 278-284.
    COSTA C N, ANASTASIADOU T, EFSTATHIOU A M. The selective catalytic reduction of nitric oxide with methane over La2O3-CaO systems: Synergistic effects and surface reactivity studies of NO, CH4, O2, and CO2 by transient techniques[J]. J Catal, 2000, 194(2): 250-265.
    MUHAMMAD B I C, MOHAMMAD M. H, PAUL A C. Effect of supercritical water gasification treatment on Ni/La2O3-Al2O3-based catalysts[J]. Appl Catal A: Gen, 2011, 405: 84-92.
    MU Q T, WANG Y D. Synthesis, characterization, shape-preserved transformation, and optical properties of La(OH)3, La2O2CO3, and La2O3 nanorods[J]. J Alloy Comp, 2011, 509(2): 396-401.
    WANG F, SHI R J, LIU Z Q, SHANG P J, PANG X Y, SHEN S, FENG Z C, LI C, SHEN W J. Highly efficient dehydrogenation of primary aliphatic alcohols catalyzed by Cu nanoparticles dispersed on rod-shaped La2O2CO3[J]. ACS Catal, 2013, 3(5): 890-894.
    ZHANG X H, WANG T J, MA L L, ZHANG Q, YU Y X, LIU Q Y. Characterization and catalytic properties of Ni and NiCu catalysts supported on ZrO2-SiO2 for guaiacol hydrodeoxygenation[J]. Catal Commun, 2012, 33: 15-19.
    RACHA A, TOMOO M, TAKATO M, KOICHIRO J, KIYOTOMY K. Highly selective hydrogenolysis of glycerol to 1, 3-propanediol over a boehmite-supported platinum/tungsten catalyst[J]. ChemSusChem, 2013, 6(8): 1345-1347.
    SUN C W, XIAO G L, LI H, CHEN L Q. Mesoscale organization of flower-Like La2O2CO3 and La2O3 microspheres[J]. J Am Cera Soc, 2007, 90(8): 2573-2581.
    SUN R Y, WANG T T, ZHENG M Y, DENG W Q, PANG J F, WANG A Q, WANG X D, ZHANG T. Versatile nickel-lanthanum(III) catalyst for direct conversion of cellulose to glycols[J]. ACS Catal, 2015, 5: 874-883.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (392) PDF downloads(318) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return