Volume 43 Issue 10
Oct.  2015
Turn off MathJax
Article Contents
WANG Hong-ming, MIAO Rong-rong, YANG Yong, QIAO Yu-hui, ZHANG Qiong-fang, LI Chun-sheng, HUANG Jiang-ping. Study on the catalytic gasification of alkali lignin over Ru/C nanotubes in supercritical water[J]. Journal of Fuel Chemistry and Technology, 2015, 43(10): 1195-1201.
Citation: WANG Hong-ming, MIAO Rong-rong, YANG Yong, QIAO Yu-hui, ZHANG Qiong-fang, LI Chun-sheng, HUANG Jiang-ping. Study on the catalytic gasification of alkali lignin over Ru/C nanotubes in supercritical water[J]. Journal of Fuel Chemistry and Technology, 2015, 43(10): 1195-1201.

Study on the catalytic gasification of alkali lignin over Ru/C nanotubes in supercritical water

Funds:  The project was supported by the National Natural Science Foundation of China (201307049), Yunnan Province, the Introduction of High-end Scientific and Technological Talents Project(2010CI110), Yunnan Major Science and Technology Projects(2012ZB002), Innovztion and Entrepeneurship Training Program for College Students in Yunnan Province about Research Lignite Liquefaction Oil Supercritical Ethanol System(201410674005).
  • Received Date: 2015-06-01
  • Rev Recd Date: 2015-07-16
  • Publish Date: 2015-10-31
  • Aiming at the refractory characteristics of alkali lignin, the study on the gasification of alkali lignin in supercritical water was carried out in a batch reactor with Ru/C nanotubes as the catalyst. The effect of temperature, water density, time, concentration of the reactant, catalyst amount on the gasification of alkali lignin was discussed, as well as the catalytic efficiency of the Ru/C catalyst nanotubes. The optimum conditions of the catalytic gasification of alkali lignin on the Ru/C nanotubes obtained with single factor analysis were the reaction temperature of 600 ℃, 0.128 4 g/cm3 water density, 60 min reaction time, 3.0% reactant concentration, catalyst amount of 0.5 g/g (alkali lignin). The results show that during the gasification process of alkali lignin in supercritical water, the high temperature, high water density (or pressure), long reaction time, low reactant concentration and right amount of catalyst will be in favor of the gasification reaction. The alkali lignin gasification efficiency and carbon gasification efficiency reached 73.74% and 56.34% under the optimal reaction conditions, and the hydrogen production capacity was also significantly improved.
  • loading
  • YANG H P, YAN R, CHEN H P, LEE D H, ZHENG C. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007, 86(12): 1781-1788.
    GUO Y, WANG S Z, XU D H, GONG Y M, MA H H, TANG X Y. Review of catalytic supercritical water gasification for hydrogen production from biomass[J]. Renew Sust Energy Rev, 2010, 14(1): 334-343.
    SUI X J, WU S B. Study on mechanism of action of catalysts on liquefaction of bagasse alkali lignin[J]. Adv Mater Res, 2011, 383-390: 6145-6150.
    RESENDE F, SAVAGE P E. Expanded and updated results for supercritical water gasification of cellulose and lignin in metal-free reactors[J]. Energy Fuels, 2009, 23(12): 6213-6221.
    YAMAGUCHI A, HIVOSHI N, SATO O, OSADA M, SHIRAI M. Lignin gasification over supported ruthenium trivalent salts in supercritical water[J]. Energy Fuels, 2008, 22(3): 1485-1492.
    ANTAL JR M J, ALLEN S G, SCHULMAN D, XU X D. Biomass gasification in supercritical water. Ind Eng Chem Res, 2000, 39(11): 4040-4053.
    MINOWA T, ZHEN F, OGI T. Cellulose decomposition in hot-compressed water with alkali or nickel catalyst[J]. J Supercrit Fluid, 1998, 13: 253-259.
    YOSHIDA T, OSHIMA Y, MATSUMURA Y. Gasification of biomass model compounds and real biomass in supercritical water[J]. Biomass Bioenergy, 2004, 26(1): 71-78.
    HAO X H, GUO L J, MAO X, ZHANG X M, CHEN X J. Hydrogen production from glucose used as a model compound of biomass gasified in supercritical water[J]. Hydrogen Energy, 2003, 28: 55-64.
    LU Y, JI C M, GUO L J. Experimental investigation on hydrogen production by agricultural biomass gasification in supercritical water[J]. J Xi'an Jiaotong Univ, 2005, 39(3): 238-242.
    GUAN Q Q, WEI C H, SHI H. Partial oxidative gasification of phenol for hydrogen in supercritical water[J]. Appl Energy, 2011, 88(8): 2612-2616.
    MITSUMASA OS M, O S, KUNIO A, MASAYUKI S. Stability of supported ruthenium catalysts for lignin gasification in supercritical water[J]. Energy Fuels, 2006, 20(6): 2337-2343.
    ELLIOTT D C, SEALOEK JR L J, BAKER E G. Chemical processing in high pressure aqueous environments: 2.Development of catalysts for gasification[J]. Ind Eng Chem Res, 1993, 32(8): 1542-1548.
    RABE S, NACHTEGAAL M, ULRICH T. Towards understanding the catalytic reforming of biomass in supercritical water[J]. Angew Chemie, 2010, 49(36): 6434-6437.
    RESENDE F L P, FRALEY S A, BERGER M J. Noncatalytic gasification of lignin in supercritical water[J]. Energy Fuels, 2008, 22(2): 1328-1334.
    YOSHIDA T, OSHIMA T, MATSUMURA Y. Partial oxidative and catalytic biomass gasification in supercritical water: A promising flow reactor system[J]. Ind Eng Chem Res, 2004, 43(15): 4097-4104.
    STUCKI S, VOGEL F, LUDWIG C. Catalytic gasification of algae in supercritical water for biofuel production and carbon capture[J]. Energy Environ Sci, 2009, 2(5): 535-541.
    BRUNNER G. Near critical and supercritical water. Part I. Hydrolytic and hydrothermal[J]. J Supercrit Fluid, 2009, 47: 373-381.
    BERMEJO M D, COCERO M J. Supercritical water oxidation: A technical review[J]. Aiche J, 2006, 52(11):3933-3951.
    KRUSE A, DINJUS E. Hot compressed water as reaction medium and reactant: Properties and synthesis reactions[J]. J Supercrit Fluid, 2007, 39(3): 362-380.
    LUNDQUIST K, ERICSSON L. Low-molecular weight lignin hydrolysis products[C]. Appl Polymer Symp, 1976, 28: 1393-1407.
    ANTAL M J, MATSUMURA Y, XU X. Catalytic gasification of wet biomass in supercritical water[J]. Prepr Pap-Am Chem Soc, Div Fuel Chem, 1995, 40(2): 304-407.
    毛肖岸, 郝小红, 张西民, 郭烈锦. 超临界水中葡萄糖气化制氢实验研究[J]. 化学工程, 2004, 32(5): 25-28. (MAO Xiao-an, HAO Xiao-hong, ZHANG Xi-min, GUO Lie-jin. Experimental study of hydrogen production from glucose gasification in supercritical water[J]. Chem Eng J, 2004, 32(5): 25-28.)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (369) PDF downloads(425) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return