Volume 43 Issue 10
Oct.  2015
Turn off MathJax
Article Contents
ZHANG An-chao, ZHANG Zhi-hui, SHI Jin-ming, CHEN Guo-yan, ZHOU Chang-song, SUN Lu-shi. Effect of preparation methods on the performance of MnOx-TiO2 adsorbents for Hg0 removal and SO2 resistance[J]. Journal of Fuel Chemistry and Technology, 2015, 43(10): 1258-1266.
Citation: ZHANG An-chao, ZHANG Zhi-hui, SHI Jin-ming, CHEN Guo-yan, ZHOU Chang-song, SUN Lu-shi. Effect of preparation methods on the performance of MnOx-TiO2 adsorbents for Hg0 removal and SO2 resistance[J]. Journal of Fuel Chemistry and Technology, 2015, 43(10): 1258-1266.

Effect of preparation methods on the performance of MnOx-TiO2 adsorbents for Hg0 removal and SO2 resistance

Funds:  The project was supported by the National Natural Science Foundation of China (51306046, 51166004, 51376073), the Fundamental Research Funds for the Universities of Henan Province (NSFRF140204).
  • Received Date: 2015-07-01
  • Rev Recd Date: 2015-08-23
  • Publish Date: 2015-10-31
  • Aiming at the difficulty of elemental mercury (Hg0) removal from flue gas due to its indissolubility in water and the problem of lower SO2 resistance performance of manganese-based adsorbent, the MnOx-TiO2 adsorbents prepared with impregnation (IM), sol-gel (SG) and deposition-precipitation method (DP) were employed to remove Hg0 in the absence and presence of SO2. The adsorbents were characterized by N2 adsorption-desorption, TG-DSC, XRD, TEM, H2-TPR, and XPS techniques. The results showed that Hg0 removal performance over MnOx-TiO2 adsorbents was markedly influenced by the preparation methods. The adsorbent prepared by DP method exhibited a superior activity for Hg0 adsorption and the best SO2 resistance performance. The characterization results indicated that the Hg0 removal activity did not correlate with the BET surface area. The preparation method of deposition-precipitation could not only lead to an increase of reducibility and high dispersion of MnOx, but also significantly enhance a migration of well-dispersed active phase from bulk to surface, resulting in a higher Mn4+/Mn ratio and the presence of abundant chemisorbed oxygen, which would play an important role in promoting Hg0 removal.
  • loading
  • XU W Q, WANG H R, ZHU T Y, KUANG J Y, JING P F. Mercury removal from coal combustion flue gas by modified fly ash[J]. J Environ Sci, 2013, 25(2): 393-398.
    UDDIN M A, YAMADA T, OCHIAI R. Role of SO2 for elemental mercury removal from coal combustion flue gas by activated carbon[J]. Energy Fuels, 2008, 22(4): 2284-2289.
    GRANITE E J, PENNLINE H W, HARGIS R A. Novel sorbents for mercury removal from flue gas[J]. Ind Eng Chem Res, 2000, 39(4): 1020-1029.
    STREETS D G, HAO J M, WU Y, JIANG J K, CHAN M, TIAN H Z, FENG X B. Anthropogenic mercury emissions in china[J]. Atmos Environ, 2005, 39(40): 7789-7806.
    YANG S J, GUO Y F, YAN N Q, WU D Q, HE, H P, XIE J K, QU Z, JIA J P. Remarkable effect of the incorporation of titanium on the catalytic activity and SO2 poisoning resistance of magnetic Mn-Fe spinel for elemental mercury capture[J]. Appl Catal B: Environ, 2011, 101(3/4): 698-708.
    PRESTO A A, GRANITE E J. Survey of catalysts for oxidation of mercury in flue gas[J]. Environ Sci Technol, 2006, 40(18): 5601-5609.
    ZHANG H W, CHEN J T, LIANG P, WANG L. Mercury oxidation and adsorption characteristics of potassium permanganate modified lignite semi-coke[J]. J Environ Sci, 2012, 24(12): 2083-2090.
    MA Y P, XU H M, ZAN Q, YAN N Q, WANG W H. Absorption characteristics of elemental mercury in mercury chloride solutions[J]. J Environ Sci, 2014, 26(11): 2257-2265.
    WU Z B, JIN R B, WANG H Q, LIU Y. Effect of ceria doping on SO2 resistance of Mn/TiO2 for selective catalytic reduction of NO with NH3 at low temperature[J]. Catal Commun, 2009, 10(6): 935-939.
    LIU F D, HE H, DING Y, ZHANG C B. Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3[J]. Appl Catal B: Environ, 2009, 93(1/2): 194-204.
    王燕彩, 刘昕, 宁平, 张秋林, 张金辉, 徐利斯, 唐小苏, 王明智. 制备方法对氧化锰八面体分子筛的NH3选择性催化还原NOx性能的影响[J]. 燃料化学学报, 2014, 42(11): 1357-1364.
    (WANG Yan-cai, LIU Xin, NING Ping, ZHANG Qiu-lin, ZHANG Jin-hui, XU Li-si, TANG Xiao-su, WANG Ming-zhi. Effect of preparation methods on selective catalytic reduction of NOx with NH3 over manganese oxide octahedral molecular sieves[J]. J Fuel Chem Technol, 2014, 42(11): 1357-1364.)
    SHEN B X, LIU T, ZHAO N, YANG X Y, DENG L D. Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. J Environ Sci, 2010, 22(9): 1447-1454.
    JIANG B Q, LIU Y, WU Z B. Low-temperature selective catalytic reduction of NO on MnOx/TiO2 prepared by different methods[J]. J Hazard Mater, 2009, 162(2/3): 1249-1254.
    张信莉, 王栋, 彭建升, 路春美, 徐丽婷. 煅烧温度对Mn改性γ-Fe2O3催化剂结构及低温SCR脱硝活性的影响[J]. 燃料化学学报, 2015, 43(2): 243-250.
    (ZHANG Xin-li, WANG Dong, PENG Jian-sheng, LU Chun-mei, XU Li-ting. Influence of calcination temperature on structural property of Mn doped γ-Fe2O3 catalysts and low-temperature SCR activity [J]. J Fuel Chem Technol, 2015, 43(2): 243-250.)
    WU Z B, TANG N, XIAO L, LIU Y, WANG H Q. MnOx/TiO2 composite nanoxides synthesized by deposition-precipitation method as a superior catalyst for NO oxidation[J]. J Colloid Interf Sci, 2010, 352(1): 143-148.
    QIAO S H, CHEN J, LI J F, QU Z, LIU P, YAN N Q, JIA J P. Adsorption and catalytic oxidation of gaseous elemental mercury in flue gas over MnOx/alumina[J]. Ind Eng Chem Res, 2009, 48(7): 3317-3322.
    JI L, SREEKANTH P M, SMIRNIOTIS P G, THIEL S W, PINTO N G. Manganese oxide/titania materials for removal of NOx and elemental mercury from flue gas[J]. Energy Fuels, 2008, 22(4): 2299-2306.
    XU Y L, ZHONG Q, LIU X Y. Elemental mercury oxidation and adsorption on magnesite powder modied by Mn at low temperature[J]. J Hazard Mater, 2015, 283: 252-259.
    游淑淋, 周劲松, 侯文慧, 孟帅琦, 高翔, 骆仲泱. 锰改性活性焦脱除合成气中单质汞的影响因素[J]. 燃料化学学报, 2014, 42(11): 1324-1331.
    (YOU Shu-lin, ZHOU Jin-song, HOU Wen-hui, MENG Shuai-qi, GAO Xiang, LUO Zhong-yang. Factors influencing the removal of elemental mercury by Mn-AC sorbent in syngas[J]. J Fuel Chem Technol, 2014, 42(11): 1324-1331.)
    LI H L, WU C Y, LI Y, LI L, ZHAO Y C, ZHANG J Y. Role of flue gas components in mercury oxidation over TiO2 supported MnOx-CeO2 mixed-oxide at low temperature[J]. J Hazard Mater, 2012, 243: 117-123.
    ZHANG A C, ZHENG W W, SONG J, HU S, LIU Z C, XIANG J. Cobalt manganese oxides modified titania catalysts for oxidation of elemental mercury at low flue gas temperature[J]. Chem Eng J, 2014, 236: 29-38.
    LI J W, ZHAO P, LIU S T. SnOx-MnOx-TiO2 catalysts with high resistance to chlorine poisoning for low-temperature chlorobenzene oxidation[J]. Appl Catal A: Gen, 2014, 482: 363-369.
    QI G, YANG R T. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2 catalyst[J]. J Catal, 2003, 217(2): 434-441.
    HUANG H Y, LONG R Q, YANG R T. A highly sulfur resistant Pt-Rh/TiO2/Al2O3 storage catalyst for NOx reduction under lean-rich cycles[J]. Appl Catal B: Environ, 2001, 33(2): 127-136.
    KIJLSTRA W S, BIERVLIET M, POELS E K, BLIEK A. Deactivation by SO2 of MnOx/Al2O3 catalysts used for the selective catalytic reduction of NO with NH3 at low temperatures[J]. Appl Catal B: Environ, 1998, 16(4): 327-337.
    XU J J, AO Y H, FU D G, YUAN C W. Low-temperature preparation of F-doped TiO2 film and its photocatalytic activity under solar light[J]. Appl Surf Sci, 2008, 254(10): 3033-3038.
    ZHANG A C, ZHANG Z H, CHEN J J, SHENG W, SUN L S, XIANG J. Effect of calcination temperature on the activity and structure of MnOx/TiO2 adsorbent for Hg0 removal[J]. Fuel Process Technol, 2015, 135: 25-33.
    KHAN A, SMIRNIOTIS P G. Relationship between temperature-programmed reduction profile and activity of modified ferrite-based catalysts for WGS reaction[J]. J Mol Catal A: Chem, 2008, 280(1/2): 43-51.
    KAPTEIJN F, SINGOREDJO L, ANDREINI A, MOULIJN J A. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia[J]. Appl Catal B: Environ, 1994, 3(2/3): 173-189.
    GAO X, JIANG Y, FU Y C, ZHONG Y, LUO Z Y, CEN K F. Preparation and characterization of CeO2/TiO2 catalysts for selective catalytic reduction of NO with NH3[J]. Catal Commun, 2010,11(5): 465-469.
    WAN Q, DUAN L, HE K B, LI J H. Removal of gaseous elemental mercury over a CeO2-WO3/TiO2 nanocomposite in simulated coal-fired flue gas[J]. Chem Eng J, 2011, 170(2/3): 512-517.
    KARAMI A, SALEHI V. The influence of chromium substitution on an iron-titanium catalyst used in the selective catalytic reduction of NO[J]. J Catal, 2012, 292: 32-43.
    CHEN Z H, WANG F R, LI H, YANG Q, WANG L F, LI X H. Low-temperature selective catalytic reduction of NOx with NH3 over Fe-Mn mixed-oxide catalysts containing Fe3Mn3O8 phase[J]. Ind Eng Chem Res, 2012, 51(1): 202-212.
    GAO R H, ZHANG D S, MAITARAD P, SHI L Y, RUNGROTMONGKOL T, LI H R, ZHANG J P, CAO W G. Morphology-dependent properties of MnOx/ZrO2-CeO2 nanostructures for the selective catalytic reduction of NO with NH3[J]. J Phys Chem C, 2013, 117(20): 10502-10511.
    YU D Q, LIU Y, WU Z B. Low-temperature catalytic oxidation of toluene over mesoporous MnOx-CeO2/TiO2 prepared by sol-gel method[J]. Catal Commun, 2010, 11(8): 788-791.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (488) PDF downloads(395) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return