Volume 43 Issue 11
Nov.  2015
Turn off MathJax
Article Contents
YANG Qun, CHANG Hai-zhou, DU Shuai, ZHAO Yue-feng, WANG Lu, YU Zhi-hao. Pyrolysis interaction between vitrinite and inertinite from Chinese Wucaiwan coal[J]. Journal of Fuel Chemistry and Technology, 2015, 43(11): 1295-1302.
Citation: YANG Qun, CHANG Hai-zhou, DU Shuai, ZHAO Yue-feng, WANG Lu, YU Zhi-hao. Pyrolysis interaction between vitrinite and inertinite from Chinese Wucaiwan coal[J]. Journal of Fuel Chemistry and Technology, 2015, 43(11): 1295-1302.

Pyrolysis interaction between vitrinite and inertinite from Chinese Wucaiwan coal

Funds:  The project was supported by the National Natural Science Foundation of China (21276156).
  • Received Date: 2015-06-09
  • Rev Recd Date: 2015-09-14
  • Publish Date: 2015-11-30
  • Two different systems for vitrinite and inertinite from Wucaiwan coal were established:no interaction (A) and interaction system (B). Thermogravimetric (TG) and fouriertransform infrared (FT-IR) were used to analyze the pyrolysis products in the two systems. The results show that at 300~450℃ the hydrogen content of B is higher than that of system A, indicating that the reaction of alkyl radical transfer between the vitrinite and inertinite. Meanwhile, the aromatic hydrogen of system B is more than that of system A, which shows that aromatization between vitrinite and inertinite occurs, and a few hydrogen free radicals produced from vitrinite occur macromolecular aromatic structure side chain substitution reaction with inertinite. From 500 to 700℃, the aliphatic and aromatic hydrogen content of system B is lower than that of system A, showing that polycondensation reaction and condensation reaction exist between the vitrinite and inertinite. From 750 to 800℃, aromatic aliphatic hydrogen content of system B is greater than that of system A, which means that vitrinite generates more hydrogen free radicals and occur hydrogenation reaction with inertinite macromolecular aromatic structure as well as side chain substitution reaction with inertinite in system B; From 850 to 900℃, polycyclic aromatic condensation reaction proceeds further between vitrinite and inertinite.
  • loading
  • XIE K, ZHANG Y, LI C, LING D. Pyrolysis characteristics of macerals separated from asingle coal and their artificial mixture[J]. Fuel, 1991, 70(3): 474-479.
    WANG J, DU J, CHANG L, XIE K C. Study on the structure and pyrolysischaracteristics of Chinese western coals[J]. Fuel Process Technol, 2010, 91(4): 430-433.
    OZTAS N A, YURUM Y. Pyrolysis of TurkishZonguldak bituminous coal. Part 1. Effect of mineral matter[J]. Fuel, 2000, 79(10): 1221-1227.
    SAFAROVA M, KUSY J, ANDEL L. Pyrolysis of brown coal under different process conditions[J]. Fuel, 2005, 84(17): 2280-2285.
    ZHAO Y, HU H, JIN, HE X, WU B. Pyrolysis behavior of vitrinite and inertinite from Chinese Pingshuo coal by TG-MS and in a fixed bed reactor[J]. Fuel Process Technol, 2011, 92(4): 780-786.
    谢克昌. 煤的结构与反应性[M]. 北京: 科学出版社, 2002. (XIE Ke-chang. Coal structure and its reactivity[M]. Beijing: Science Press, 2002.)
    SUN Q L, LI W, LI B Q. The synergistic effect between macerals during pyrolysis[J]. Fuel, 2002, 81(7): 973-974.
    孙庆雷, 李文, 李保庆. 神木煤热解的挥发分收率与岩相组成的关系[J]. 化工学报, 2003, 54(2): 269-272. (SUN Qing-lei, LI Wen, LI Bao-qing. Relationship between volatile yield and petrographic analysis during pyrolysis of Shenmu macerals[J]. Chem Ind Eng (China), 2003, 54(2): 269-272.)
    李文华. 东胜-神府煤的煤质特征与转化特性(兼论中国动方媒的岩相特征)[D]. 北京: 煤炭科学研究总院, 2001. (LI Wen-hua. Characteristics and conversion behavior of Donsheng-Shenfu coal (Petrographical Characteristics of Chinese steam coal)[D]. Beijing: CCRI, 2001.)
    何秀风, 陈小利, 杜娟, 常丽萍. 宁夏原煤及其显微组分热解过程中气相产物生成的研究[J]. 煤化工, 2009, 2: 25-27. (HE Xiu-feng, CHEN Xiao-li, DU Juan, CHANG Li-ping. Study on the gaseous products generated during pyrolysis of ningxia raw coal and its macerals[J]. Coal Chem Ind, 2009, 2: 25-27.)
    DUXBURY J. Prediction of coal pyrolysis yields from BS volatile matter and petrographic analysis[J]. Fuel, 1997, 76(13): 1337-1343.
    AHMED M A, BLESA M J, JUAN R, VANDENBERGHE R E.Characterisation of an Egyptian coal by Mossbauer and FT-IR spectroscopy[J]. Fuel, 2003, 82(14): 1825-1829.
    GENG W H, NAKAJIMA T, TAKANASHI H, OHKI A. Analysis of carboxyl group in coal and coal aromaticity by Fourier transform infrared (FT-IR) spectrometry[J]. Fuel, 2009, 88(1): 139-144.
    SONIBARE O O, HAEGER T, FOLEY S F. Structural characterization of Nigerian coals by X-ray diffraction, Raman and FT-IR spectroscopy[J]. Energy, 2010, 35(12): 5347-5353.
    ALESSIO A D, VERGAMINI P, BENEDETTI E. FT-IR investigation of the structural changes of Sulcis and South Africa coals under progressive heating in vacuum[J]. Fuel, 2000, 79(10): 1215-1220.
    ZHUO Y, LEMAIGNEN L, CHATZAKIS I N, REED G P, DUGWELL D R, KANDIYOTI R. An attempt to correlate conversions in pyrolysis and gasification with FT-IR spectra of coals[J]. Energy Fuels, 2000, 14(5): 1049-1058.
    JAMES C H, ISABEL S, MARIA M, ALAN C C. The investigation of chemical structure of coal macerals via transmitted-light FT-IR microscopy by X. Sun.[J]. Spectrochim Acta, Part A, 2007, 67(5): 1433-1437.
    常海洲, 王传格, 曾凡桂, 李军, 李文英, 谢克昌. 不同还原程度煤显微组分组表面结构XPS对比分析[J]. 燃料化学学报, 2006, 34(3): 389-392. (CHANG Hai-zhou, WANG Chuan-ge, ZENG Fan-gui, LI Jun, LI Wen-ying, XIE Ke-chang. XPS comparativeanalysis of coal macerals with different reducibility[J]. J Fuel Chem Technol, 2006, 34(3): 389-392.)
    彭立才, 韩德馨, 邵文斌, 刘青文. 柴达木盆地北缘侏罗系烃源岩干酪根 13C核磁共振研究[J]. 石油学报, 2002, 23(2): 34-37. (PENG Li-cai, HAN De-xin, SHAO Wen-bin, LIU Qing-wen. 13C NMR research on the kerogens of Jurassic hydrocabon source rock in the northen edge, Qaidam basin[J]. Acta Pet Sin, 2002, 23(2): 34-37.)
    郑昀辉, 戴中蜀. 用NMR研究低温热处理对低煤化度煤化学组成结构的影响[J]. 煤炭转化, 1997, 20(4): 54-59. (ZHENG Yun-hui, DAI Zhong-shu.Using NMR to research the influence of low temperature pyrolysis on the chemical component and structure of low rank coal[J]. Coal Conv, 1997, 20(4): 54-59.)
    TREWHELLA M T, POPLETT L J F, GRINT A. Structure of Green River oil shale kerogen determination using solid state 13C-NMR spectroscopy[J]. Fuel, 1986, 65(4): 541-546.
    罗陨飞, 李文华, 陈亚飞. 中低变质程度煤显微组分结构的 13C-NMR研究[J]. 燃料化学学报, 2005, 33(5): 540-543. (LUO Yun-fei, LI Wen-hua, CHEN Ya-fei. 13 C- NMR analysis on different macerals of several low- to- medium rank coals[J]. J Fuel Chem Technol, 2005, 33(5): 540-543.)
    JOSE V I, EDGAR M, RAFAEL M. FT-IR study of the evolution of coalstructure during the coalification process[J]. Org Geochem, 1996, 6(24): 725-735.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (398) PDF downloads(794) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return