Volume 43 Issue 11
Nov.  2015
Turn off MathJax
Article Contents
WEI Jun-tao, DING Lu, ZHOU Zhi-jie, YU Guang-suo. In-situ analysis of catalytic gasification reaction characteristics of coal char-CO2 with K2CO3 additive[J]. Journal of Fuel Chemistry and Technology, 2015, 43(11): 1311-1319.
Citation: WEI Jun-tao, DING Lu, ZHOU Zhi-jie, YU Guang-suo. In-situ analysis of catalytic gasification reaction characteristics of coal char-CO2 with K2CO3 additive[J]. Journal of Fuel Chemistry and Technology, 2015, 43(11): 1311-1319.

In-situ analysis of catalytic gasification reaction characteristics of coal char-CO2 with K2CO3 additive

Funds:  The project was supported by the National Natural Science Foundation of China (21376081) and the National High Technology Research and Development Program of China (863 Program, 2012AA053101).
  • Received Date: 2015-05-08
  • Rev Recd Date: 2015-07-13
  • Publish Date: 2015-11-30
  • Interactions of catalyst (K2CO3) with Shenfu (SF)/Zunyi (ZY) char during gasification were observed by in-situ heating stage microscope. The effects of gasification temperature (750~950℃) and catalyst loading amount (2.2%, 4.4%, 6.6%) were investigated in a thermogravimetric analyzer. The results show that loading K2CO3 on SF/ZY stimulates development of pore structure in pyrolysis process. The in-situ heating stage experiments indicates that most of the char particles react with CO2 in shrinking core mode below the melting point of K2CO3. Above this temperature, for SF char, obvious molten potassium catalyst diffusion can be observed in the later reaction stage with rapid consumption of carbon skeleton; but for ZY char, most of the molten potassium exists on the surface of coal char with slower consumption of stable carbon skeleton. Gasification reactivity of SF/ZY char increases with increasing loading amount of K2CO3. Catalytic efficiency of potassium catalyst on SF char initially increases and then decreases with gasification temperature, the turning point of gasification temperature is close to the melting point of K2CO3. This may be due to blocking of a fraction of pore structure resulted from the good fluidity of molten potassium catalyst.
  • loading
  • 王辅臣, 于广锁, 龚欣, 刘海峰, 王亦飞, 周志杰, 陈雪莉. 大型煤气化技术的研究与发展[J]. 化工进展, 2009, 28(2): 173-180. (WANG Fu-chen, YU Guang-suo, GONG Xin, LIU Hai-feng, WANG Yi-fei, ZHOU Zhi-jie, CHEN Xue-li. Research and development of large-scale coal gasification technology[J]. Chem Ind Eng Prog, 2009, 28(2): 173-180.)
    林善俊, 周志杰, 霍威, 丁路, 于广锁. 内扩散对煤和石油焦水蒸气气化反应性能的影响[J]. 燃料化学学报, 2014, 42(8): 905-912. (LIN Shan-jun, ZHOU Zhi-jie, HUO Wei, DING Lu, YU Guang-suo. Effect of internal diffusion on steam gasification reactivity of coal and petroleum coke[J]. J Fuel Chem Technol, 2014, 42(8): 905-912.)
    YEBOAH Y D, XU Y, SHETH A, GODAVARTY A, AGRAWAL P K. Catalytic gasification of coal using eutectic salts: Identification of eutectics[J]. Carbon, 2003, 41(2): 203-214.
    SHARMA A, TAKANOHASHI T I, SAITO I. Effect of catalyst addition on gasification reactivitiy of hypercoal and coal with steam at 775~700℃[J]. Fuel, 2008, 87(12): 2686-2690.
    XU S Q, ZHOU Z J, XIONG J, YU G S, WANG F C. Effect of alkaline metal on coal gasification at pyrolysis and gasification phases[J]. Fuel, 2011,90(5): 1723-1730.
    KARIMI A, GRAY M R. Effectiveness and mobility of catalysts for gasification of bitumen coke[J]. Fuel, 2011, 90(1): 120-125.
    WOOD B J, FLEMING R H, WISH H. Reactive intermediate in the alkaline-carbonate-catalysed gasification of coal char[J]. Fuel, 1984, 63(11): 1600-1603.
    WANG J, SAKANISHI K, SATIO I. High-yield hydrogen production by steam gasification of hypercoal (ash-free coal extract) with potassium carbonate: Comparison with raw coal[J]. Energy Fuels, 2005, 19: 2114-2120.
    SHARMA A, TAKANOHASHI T, MORISHITA K, TAKARADA T, SAITO I. Low temperature catalytic steam gasification of hypercoal to produce H2 and synthesis gas[J]. Fuel, 2008, 87: 491-497.
    JIANG M Q, ZHOU R, HU J, WANG F C, WANG J. Calcium-promoted catalytic activity of potassium carbonate for steam gasification of coal char: Influences of calcium species[J]. Fuel, 2012, 99: 64-71.
    LANG R J, NEAVEL R C. Behaviour of calcium as a steam gasification catalyst[J]. Fuel, 1982, 61: 620-626.
    YUAN S, CHEN X L, LI J, WANG F C. CO2 gasification kinetics of biomass char derived from high-temperature rapid pyrolysis[J]. Energy Fuels, 2011, 25: 2314-2321.
    MIURA K, HASHIMOTO K, SILVESTON P L. Factors affecting the reactivity of coal chars during gasification and indices repeating reactivity[J]. Fuel, 1989, 68(11): 1461-1475.
    DING L, ZHOU Z J, GUO Q H, HUO W, YU G S. Catalytic effects of Na2CO3 additive on coal pyrolysis and gasification[J]. Fuel, 2015, 142: 134-144.
    殷宏彦. 碱金属碳酸盐对煤CO2 气化反应性影响的研究[D]. 太原: 太原理工大学, 2010. (DUAN Hong-yan. Study on influence of alkali carbonates to gasification reactivity of coal with CO2[D]. Taiyuan: Taiyuan University of Technology, 2010.)
    霍威. 煤等含碳物质热解特性及气化反应特性模型化研究[D]. 上海: 华东理工大学, 2015. (HUO Wei. Researh on pyrolysis characteristics and gasification kinetics modeling of coal and other carbonaceous materials[D]. Shanghai: East China University of Science & Technology, 2015.)
    任轶舟, 王亦飞, 朱龙雏, 金渭龙, 王辅臣, 于广锁. 高温煤焦气化反应的Langmuir-Hinshelwood动力学模型[J]. 化工学报, 2014, 65(10): 3906-3915. (REN Yi-zhou, WANG Yi-fei, ZHU Long-chu, JIN Wei-long, WANG Fu-chen, YU Guang-suo. Langmuir-Hinshelwood kinetic model of high temperature coal char gasification reaction[J]. CIESC J, 2014, 65(10): 3906-3915.)
    DING L, ZHOU Z J, HUO W, WANG Y F, YU G S. In situ heating stage analysis of fusion and catalytic effects of a Na2CO3 additive on coal char particle gasification[J]. Ind Eng Chem Res, 2014, 53: 19159-19167.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (455) PDF downloads(704) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return