Volume 45 Issue 3
Mar.  2017
Turn off MathJax
Article Contents
ZHAN Hao, YIN Xiu-li, HUANG Yan-qin, ZHANG Xiao-hong, YUAN Hong-you, XIE Jian-jun, WU Chuang-zhi. Characteristics of NOx precursors and their formation mechanism during pyrolysis of herb residues[J]. Journal of Fuel Chemistry and Technology, 2017, 45(3): 279-288.
Citation: ZHAN Hao, YIN Xiu-li, HUANG Yan-qin, ZHANG Xiao-hong, YUAN Hong-you, XIE Jian-jun, WU Chuang-zhi. Characteristics of NOx precursors and their formation mechanism during pyrolysis of herb residues[J]. Journal of Fuel Chemistry and Technology, 2017, 45(3): 279-288.

Characteristics of NOx precursors and their formation mechanism during pyrolysis of herb residues

Funds:

the National Natural Science Foundation of China 51661145022

the National Natural Science Foundation of China 51676195

  • Received Date: 2016-11-24
  • Rev Recd Date: 2017-01-06
  • Available Online: 2021-01-23
  • Publish Date: 2017-03-10
  • Based on two herb residues-herbal tea waste (HTW) and penicillin mycelial waste (PMW), characteristics of NOx precursors during their pyrolysis were investigated in a horizontal tubular reactor with the help of XPS and TGA technologies. Effects of thermal conditions and physicochemical properties of fuels were discussed and compared. The results demonstrate that protein-N is the main nitrogen form for both HTW and PMW, determining the dominance of NH3 among NOx precursors at any operational conditions. Thermal conditions would still change the ratio and total yield by intrinsically influencing their formation pathways. Subsequently, the effects could be sequenced as follows:high temperatures with rapid pyrolysis > high temperatures with slow pyrolysis > low temperatures with rapid pyrolysis ≈ low temperatures with slow pyrolysis. Moreover, at high temperatures with rapid pyrolysis, increase in particle size or decrease in moisture content would result in reduction of total yield by 5%-11% and 4%-6%, respectively. In addition, NH3 yield is produced at low temperatures or slow pyrolysis with sequence of PMW > HTW and vice versa, depending on components in the fuels. Consequently, analyses on nitrogen forms in char and nitrogen distribution indicate that total yield of 20%-45% is observed to be independent of fuel type under typical pyrolysis conditions, which may provide helpful guidance for the clean reutilization of herb residues.
  • loading
  • [1]
    许光文, 纪文峰, 刘周恩, 万印华, 张小勇.轻工生物质过程残渣高值化利用必要性与技术路线分析[J].过程工程学报, 2009, 9(3):618-624. http://www.cnki.com.cn/Article/CJFDTOTAL-HGYJ200903037.htm

    XU Guang-wen, JI Wen-feng, LIU Zhou-en, WAN Yin-hua, ZHANG Xiao-yong. Necessity and technical route of value-added utilization of biomass process residues in light industry[J]. Chin J Process Eng, 2009, 9(3):618-624. http://www.cnki.com.cn/Article/CJFDTOTAL-HGYJ200903037.htm
    [2]
    ZENG X, SHAO R Y, WANG F, DONG P W, YU J, XU G W. Industrial demonstration plant for the gasification of herb residue by fluidized bed two-stage process[J]. Bioresour Technol, 2016, 206:93-98. doi: 10.1016/j.biortech.2016.01.075
    [3]
    DONG L, XU G W, SUDA T, MURAKAMI T. Potential approaches to improve gasification of high water content biomass rich in cellulose in dual fluidized bed[J].Fuel Process Technol, 2010, 91(8):882-888. doi: 10.1016/j.fuproc.2009.12.012
    [4]
    邹艳敏, 吴静波, 仰榴青, 赵江丽, 吴向阳.中药渣的综合利用研究进展[J].江苏中医药, 2008, 40(12):113-115. http://www.cnki.com.cn/Article/CJFDTOTAL-JSZY200812083.htm

    ZOU Yan-min, WU Jing-bo, YANG Liu-qing, ZHAO Jiang-li, WU Xiang-yang. Research development on the comprehensive utilization of Chinese herb residues[J]. Jiangsu J Tradit Chin Med, 2008, 40(12):113-115. http://www.cnki.com.cn/Article/CJFDTOTAL-JSZY200812083.htm
    [5]
    冼萍, 钟莉莹, 王孝英.两面针药渣的热解气化利用特性分析[J].可再生能源, 2007, 25(1):26-28. http://www.cnki.com.cn/Article/CJFDTOTAL-NCNY200701007.htm

    XIAN Ping, ZHONG Li-ying, WANG Xiao-ying. The analyses of residue of anthoxylumnitidum decoction asgasification feedstock[J]. Renewable Energy Resour, 2007, 25(1):26-28. http://www.cnki.com.cn/Article/CJFDTOTAL-NCNY200701007.htm
    [6]
    WANG P, ZHAN S H, YU H B, XUE X F, HONG N. The effects of temperature and catalysts on the pyrolysis of industrial wastes (herb residue)[J]. Bioresour Technol, 2010, 101(9):3236-3241. doi: 10.1016/j.biortech.2009.12.082
    [7]
    GUO F Q, DONG Y P, DONG L, JING Y Z. An innovative example of herb residues recycling by gasification in a fluidized bed[J]. Waste Manage, 2013, 33(4):825-832. doi: 10.1016/j.wasman.2012.12.009
    [8]
    GUO F Q, DONG Y P, ZHANG T H, DONG L, GUO C W, RAO Z H. Experimental study on herb residue gasification in an air-blown circulating fluidized bed gasifier[J]. Ind Eng Chem Res, 2014, 53(34):13264-13273. https://www.researchgate.net/publication/272144046_Experimental_Study_on_Herb_Residue_Gasification_in_an_Air-Blown_Circulating_Fluidized_Bed_Gasifier
    [9]
    杨帅, 张兆玲, 孟剑锋, 董玉平, 梁敬翠, 盖超, 范鹏飞.循环流化床中菌渣热解气化特性的研究[J].高校化学工程学报, 2015, 29(4):997-1002. http://www.cnki.com.cn/Article/CJFDTOTAL-GXHX201504031.htm

    YANG Shuai, ZHANG Zhao-ling, MENG Jian-feng, DONG Yu-ping, LIANG Jing-cui, GAI Chao, FAN Peng-fei. Study on pyrolysis gasification of fungus residues in circulating fluidized beds[J]. J Chem Eng Chin Univ, 2015, 29(4):997-1002. http://www.cnki.com.cn/Article/CJFDTOTAL-GXHX201504031.htm
    [10]
    尤占平, 郝长生, 焦永刚, 赵亮, 封春红.两种抗生素菌渣热解及燃烧特性对比研究[J].工业安全与环保, 2016, 42(5):41-43. http://www.cnki.com.cn/Article/CJFDTOTAL-GYAF201605015.htm

    YOU Zhan-ping, HAO Chang-sheng, JIAO Yong-gang, ZHAO Liang, FENG Chun-hong. Pyrolysis and combustion characteristics comparison studies of two kinds of antibiotic residues[J]. Ind Safety Environ Prot, 2016, 42(5):41-43. http://www.cnki.com.cn/Article/CJFDTOTAL-GYAF201605015.htm
    [11]
    贡丽鹏.土霉素菌渣热解技术的研究[D].石家庄:河北科技大学, 2012.

    GONG Li-peng. Research on pyrolysis technology of terramycin bacterial residue[D]. Shijiazhuang:Hebei University of Science & Technology, 2012.
    [12]
    HANSSON K M, SAMUELSSON J, TULLIN C, AMAND L E. Formation of HNCO, HCN, and NH3 from the pyrolysis of bark and nitrogen-containing model compounds[J].Combust Flame, 2004, 137(3):265-277. doi: 10.1016/j.combustflame.2004.01.005
    [13]
    GB 13271-2014, 锅炉大气污染物排放标准[S].

    GB 13271-2014, Emission standard of air pollutants for boiler[S].
    [14]
    BALAT M, BALAT M, KIRTAY E, BALAT H. Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1:Pyrolysis systems[J].Energ Convers Manage, 2009, 50(12):3147-3157. doi: 10.1016/j.enconman.2009.08.014
    [15]
    TIAN F J, LI B Q, CHEN Y, LI C Z. Formation of NOx precursors during the pyrolysis of coal and biomass. Part Ⅴ. Pyrolysis of a sewage sludge[J]. Fuel, 2002, 81(17):2203-2208. doi: 10.1016/S0016-2361(02)00139-4
    [16]
    BECIDAN M, SKREIBERG O, HUSTAD J E. NOx and N2O precursors (NH3 and HCN) in pyrolysis of biomass residues[J]. Energy Fuels, 2007, 21(2):1173-1180. doi: 10.1021/ef060426k
    [17]
    YUAN S, ZHOU Z J, LI J, CHEN X L, WANG F C. HCN and NH3 released from biomass and soybean cake under rapid pyrolysis[J]. Energy Fuels, 2010, 24(11):6166-6171. doi: 10.1021/ef100959g
    [18]
    REN Q Q, ZHAO C S, WU X, LIANG C, CHEN X P, SHEN J Z, WANG Z. Formation of NOx precursors during wheat straw pyrolysis and gasification with O2 and CO2[J]. Fuel, 2010, 89(5):1064-1069. doi: 10.1016/j.fuel.2009.12.001
    [19]
    CHEN H F, WANG Y, XU G W, YOSHIKAWA K. Fuel-N evolution during the pyrolysis of industrial biomass wastes with high nitrogen content[J]. Energies, 2012, 5(12):5418-5438. doi: 10.3390/en5125418
    [20]
    TIAN F J, YU J L, MCKENZIE L J, HAYASHI J, LI C Z. Conversion of fuel-N into HCN and NH3 during the pyrolysis and gasification in steam:A comparative study of coal and biomass[J]. Energy Fuels, 2007, 21(2):517-521. doi: 10.1021/ef060415r
    [21]
    AZNAR M, ANSELMO M S, MANYA J J, MURILLO M B. Experimental study examining the evolution of nitrogen compounds during the gasification of dried sewage sludge[J]. Energy Fuels, 2009, 23:3236-3245. doi: 10.1021/ef801108s
    [22]
    KELEMEN S R, AFEWORKI M, GORBATY M L, KWIATEK P J, SANSONE M, WALTERS C C, COHEN A D. Thermal transformations of nitrogen and sulfur forms in peat related to coalification[J]. Energy Fuels, 2006, 20(2):635-652. doi: 10.1021/ef050307p
    [23]
    TIAN Y, ZHANG J, ZUO W, CHEN L, CUI Y N, TAN T. Nitrogen conversion in relation to NH3 and HCN during microwave pyrolysis of sewage sludge[J]. Environ Sci Technol, 2013, 47(7):3498-3505. https://www.researchgate.net/publication/235904520_Nitrogen_Conversion_in_Relation_to_NH3_and_HCN_during_Microwave_Pyrolysis_of_Sewage_Sludge
    [24]
    WEI L H, WEN L, YANG T H, ZHANG N. Nitrogen transformation during sewage sludge pyrolysis[J]. Energy Fuels, 2015, 29(8):5088-5094. doi: 10.1021/acs.energyfuels.5b00792
    [25]
    ZHANG J, TIAN Y, CUI Y N, ZUO W, TAN T. Key intermediates in nitrogen transformation during microwave pyrolysis of sewage sludge:A protein model compound study[J]. Bioresour Technol, 2013, 132:57-63. doi: 10.1016/j.biortech.2013.01.008
    [26]
    CHEN H F, NAMIOKA T, YOSHIKAWA K. Characteristics of tar, NOx precursors and their absorption performance with different scrubbing solvents during the pyrolysis of sewage sludge[J]. Appl Energy, 2011, 88(12):5032-5041. doi: 10.1016/j.apenergy.2011.07.007
    [27]
    TIAN K, LIU W J, QIAN T T, JIANG H, YU H Q. Investigation on the evolution of N-containing organic compounds during pyrolysis of sewage sludge[J]. Environ Sci Technol, 2014, 48(18):10888-10896. doi: 10.1021/es5022137
    [28]
    BEIS S H, ONAY O, KOCKAR O M. Fixed-bed pyrolysis of safflower seed:Influence of pyrolysis parameters on product yields and compositions[J]. Renewable Energy, 2002, 26(1):21-32. doi: 10.1016/S0960-1481(01)00109-4
    [29]
    TIAN F J, YU J L, MCKENZIE L J, HAYASHI J, LI C Z. Formation of NOx precursors during the pyrolysis of coal and biomass. Part Ⅸ. Effects of coal ash and externally loaded-Na on fuel-N conversion during the reforming of coal and biomass in steam[J]. Fuel, 2006, 85(10/11):1411-1417.
    [30]
    REN Q Q, ZHAO C S, WU X, LIANG C, CHEN X P, SHEN J Z, TANG G Y, WANG Z. Effect of mineral matter on the formation of NOx precursors during biomass pyrolysis[J]. J Anal Appl Pyrolysis, 2009, 85(1/2):447-453.
    [31]
    REN Q Q, ZHAO C S, WU X, LIANG C, CHEN X P, SHEN J Z, WANG Z. Catalytic effects of Fe, Al and Si on the formation of NOx precursors and HCl during straw pyrolysis[J]. J Therm Anal Calorim, 2010, 99(1):301-306. doi: 10.1007/s10973-009-0150-0
    [32]
    ZHOU J Q, GAO P, DONG C Q, YANG Y P. TG-FTIR analysis of nitrogen conversion during straw pyrolysis:A model compound study[J]. J Fuel Chem Technol, 2015, 43(12):1427-1432. doi: 10.1016/S1872-5813(16)30001-9
    [33]
    袁帅, 李军, 陈雪莉, 代正华, 周志杰, 王辅臣.吡咯型氮快速热解中NH3和HCN生成机理研究[J].燃料化学学报, 2011, 39(11):801-805. http://rlhxxb.sxicc.ac.cn/CN/Y2011/V39/I06/413

    YUAN Shuai, LI Jun, CHEN Xue-li, DAI Zheng-hua, ZHOU Zhi-jie, WANG Fu-chen. Study on NH3 and HCN formation mechanisms during rapid pyrolysis of pyrrolic nitrogen[J]. J Fuel Chem Technol, 2011, 39(11):801-805. http://rlhxxb.sxicc.ac.cn/CN/Y2011/V39/I06/413
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (138) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return