Volume 45 Issue 5
May  2017
Turn off MathJax
Article Contents
TONG Yong-chun, WANG Yong-cheng, WANG Qing-yun. Theoretical study on the catalysis activity of PtnCum(n+m=4) for the first dehydrogenation of methanol[J]. Journal of Fuel Chemistry and Technology, 2017, 45(5): 564-571.
Citation: TONG Yong-chun, WANG Yong-cheng, WANG Qing-yun. Theoretical study on the catalysis activity of PtnCum(n+m=4) for the first dehydrogenation of methanol[J]. Journal of Fuel Chemistry and Technology, 2017, 45(5): 564-571.

Theoretical study on the catalysis activity of PtnCum(n+m=4) for the first dehydrogenation of methanol

Funds:

the National Natural Science Foundation of China 21263023

Natural Science Foundation of Gansu Province 1606RJYG220

General Program of Key Laboratory of Hexi Corridor Resources Utilization of Gansu XZ1606

  • Received Date: 2016-12-26
  • Rev Recd Date: 2017-04-04
  • Available Online: 2021-01-23
  • Publish Date: 2017-05-10
  • The B3PW91/LANL2DZ (ECP) method has been used to calculate the geometric parameters of adsorption and dehydrogenation of methanol on PtnCum(n+m=4). All the calculations have been used the Gaussian09 program package. Compared the adsorption energy with dehydrogenation energy barrier, it can be concluded that the path of the adsorption of methyl on the Pt site and the C-H broken is the most favorable reaction in all of the possible paths. When the catalyst of PtnCum (n+m=4) have different Pt and Cu proportions we find the catalytic activity is the best with the Pt and Cu ratio of 1:1.
  • loading
  • [1]
    BRAUCHWEI G, HIBBITTS D, NEUROCK M, WIECKOWSKI A. Electrocatalysis: A direct alcohol fuel cell and surface science perspective[J]. Catal Today, 2013, 202: 197-209. doi: 10.1016/j.cattod.2012.08.013
    [2]
    GREELEY J, MAVRIKAKIS M. Competitive paths for methanol decomposition on Pt (111)[J]. J Am Chem Soc, 2004, 126(12): 3910-3919. doi: 10.1021/ja037700z
    [3]
    GREELEY J, MAVRIKAKIS M. A first-principles study of methanol decomposition on Pt (111)[J]. J Am Chem Soc, 2002, 124: 7193-7201. doi: 10.1021/ja017818k
    [4]
    CAO D, LU G Q, WIECKOWSKI A, WASILESKI S A, NEUROCK M. Mechanisms of methanol decomposition on platinum: A combined experimental and ab initio approach[J]. J Phys Chem B, 2005, 109(23): 11622-11633. doi: 10.1021/jp0501188
    [5]
    JOO S H, KWON K, YOU D J, PAK C, CHANG H, KIM J M. Preparation of high loading Pt nanoparticles on ordered mesoporous carbon with a controlled Pt size and its effects on oxygen reduction and methanol oxidation reactions[J]. Electrochim Acta, 2009, 54(24): 5746-5753. doi: 10.1016/j.electacta.2009.05.022
    [6]
    NIU C Y, JIAO J, XING B, WANG G C, BU X H. Reaction mechanism of methanol decomposition on Pt-based model catalysts: A theoretical study[J]. J Comput Chem, 2010, 31(10): 2023-2037. doi: 10.1002/jcc.21487/full
    [7]
    XU Z F, WANG Y X. Effects of alloyed metal on the catalysis activity of Pt for ethanol partial oxidation: Adsorption and dehydrogenation on Pt3M (M=Pt, Ru, Sn, Re, Rh, and Pd)[J]. J Phys Chem C, 2011, 115: 20565-20571. doi: 10.1021/jp206051k
    [8]
    AMANI M, KAZEMEINI M, HAMEDANIAN M, PAHLAVANZADEH H, GHARIBI H. Investigation of methanol oxidation on a highly active and stable Pt-Sn electrocatalyst supported on carbon-polyaniline composite for application in a passive direct methanol fuel cell[J]. Mater Res Bull, 2015, 68: 166-178. doi: 10.1016/j.materresbull.2015.02.053
    [9]
    FENG C, TAKEUCHI T, ABDELKAREEM M A, TSUJIGUCHI T, NAKAGAWA N. Carbon-CeO2 composite nanofibers as a promising support for a PtRu anode catalyst in a direct methanol fuel cell[J]. J Power Sources, 2013, 242: 57-64. doi: 10.1016/j.jpowsour.2013.04.157
    [10]
    ZHAO J F, SUN X L, LI J L, HUANG X R. Theoretical study of methanol C-H and O-H bond activation by PtRu clusters[J]. Acta Phys Chim Sin, 2015, 31(5): 1077-1085. http://www.whxb.pku.edu.cn/EN/abstract/abstract29090.shtml
    [11]
    ZHU H, GUO Z, ZHANG X, HAN K, GUO Y, WANG F, WEI Y. Methanol-tolerant carbon aerogel-supported Pt-Au catalysts for direct methanol fuel cell[J]. Int J Hydrogen Energy, 2012, 37(1): 873-876. doi: 10.1016/j.ijhydene.2011.04.032
    [12]
    WANG F, ZHABG D J, DING Y. DFT study on CO oxidation catalyzed by PtmAun (m+n=4) clusters: Catalytic mechanism, active component, and the configuration of ideal catalysts[J]. J Phys Chem C, 2010, 114(3): 14076-14082. doi: 10.1021/jp101470c
    [13]
    CHEN M, LOU B, NI Z, XU B. PtCo nanoparticles supported on expanded graphite as electrocatalyst for direct methanol fuel cell[J]. Electrochim Acta, 2015, 165: 105-109. doi: 10.1016/j.electacta.2015.03.007
    [14]
    YANG T T, ZHU H, WAN M, DONG L, ZHANG M, DU M. Highly efficient and durable PtCo alloy nanoparticles encapsulated in carbon nanofibers for electrochemical hydrogen generation[J]. Chem Commun, 2016, 52(5): 990-993. doi: 10.1039/C5CC08097E
    [15]
    HUANG Y, ZHENG S, LIN X, SU L, GUO Y. Microwave synthesis and electrochemical performance of a PtPb alloy catalyst for methanol and formic acid oxidation[J]. Electrochim Acta, 2012, 63: 346-353. doi: 10.1016/j.electacta.2011.12.112
    [16]
    WANG J, THOMAS D F, CHEN A. Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks[J]. Anal Chem, 2008, 80(4): 997-1004. doi: 10.1021/ac701790z
    [17]
    OEZASLAN M, STREASSER P. Activity of dealloyed PtCo3 and PtCu3 nanoparticle electrocatalyst for oxygen reduction reaction in polymer electrolyte membrane fuel cell[J]. J Power Sources, 2011, 196(12): 5240-5249. doi: 10.1016/j.jpowsour.2010.11.016
    [18]
    FU S, ZHU C, SHI Q, XIA H, DU D, LIN Y. Highly branched PtCu bimetallic alloy nanodendrites with superior electrocatalytic activities for oxygen reduction reactions[J]. Nanoscale, 2016, 8(9): 5076-5081. doi: 10.1039/C5NR07682J
    [19]
    LIU Y, HUANG Y, XIE Y, YANG Z, HUANG H, ZHOU Q. Preparation of highly dispersed CuPt nanoparticles on ionic-liquid-assisted graphene sheets for direct methanol fuel cell[J]. Chem Eng J, 2012, 197: 80-87. doi: 10.1016/j.cej.2012.05.011
    [20]
    KOMATSU T, TAMURA A. Pt3Co and PtCu intermetallic compounds: Promising catalysts for preferential oxidation of CO in excess hydrogen[J]. J Catal, 2008, 258(2): 306-314. doi: 10.1016/j.jcat.2008.06.030
    [21]
    ZHANG G, YANG Z, ZHANG W, WANG Y. Facile synthesis of graphene nanoplate-supported porous Pt-Cu alloys with high electrocatalytic properties for methanol oxidation[J]. J Mater Chem A, 2016, 4: 3316-3323. doi: 10.1039/C5TA09937D
    [22]
    CHEN D, ZHAO Y, PENG X, WANG X, HU W, JING C, TIAN J. Star-like PtCu nanoparticles supported on graphene with superior activity for methanol electro-oxidation[J]. Electrochim Acta, 2015, 177: 86-92. doi: 10.1016/j.electacta.2015.03.066
    [23]
    SUN J, SHI J, XU J, CHEN X, ZHANG Z, PENG Z. Enhanced methanol electro-oxidation and oxygen reduction reaction performance of ultrafine nanoporous platinum-copper alloy: Experiment and density functional theory calculation[J]. J Power Sources, 2015, 279: 334-344. doi: 10.1016/j.jpowsour.2015.01.025
    [24]
    HUANG M, GUAN L. Facile synthesis of carbon supported Pt-Cu nanomaterials with surface enriched Pt as highly active anode catalyst for methanol oxidation[J]. Int J Hydrogen Energy, 2015, 40(20): 6546-6551. doi: 10.1016/j.ijhydene.2015.03.099
    [25]
    PERDEW J P, BURKE K, WANG Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system[J]. Phys Rev B Condens Matter, 1996, 54(23): 16533-16539. doi: 10.1103/PhysRevB.54.16533
    [26]
    BECKE A D. Density-functional thermochemistry. Ⅲ. The role of exact exchange[J]. J Chem Phys, 1993, 98(7): 5648-5652. doi: 10.1063/1.464913
    [27]
    FRISCH M J, TRUCKS G W, SCHLEGEL H B, SCUSERIA G E, ROBB M A, CHEESEMAN J R, MONTGOMERY J A J, VREVEN T, KUDIN K N, BURANT J C, MILLAM J M, IYENGAR S S, TOMASI J, BARONE J V, MENUCCI B C M, SCALMANI G, REGA N, PETERSSON G A, NAKATSUJI H, HADA M, EHARA M, TOYOTA K, FUKUDA R, HASEGAWA J, ISHIDA M, NAKAJIMA T, HONDA Y, KITAO O, NAKAI H, KLENE M, Li X, Knox J E, HRATCHIAN H P, CROSS J B, BAKKEN V, ADAMO C, JARAMILLO J, GOMPERTS R, STRATMANN R E, YAZYEV O, AUSTIN A J, CAMMI R, POMELLI C, OCHTERSKI J W, AYALA P Y, MOROKUMA K, VOTH G A, SALVADOR P, DANNENBERG J J, ZAKRZEWSKI V G, DAPPRICH S, DANIELS A D, STRAIN M C, FARKAS O, MALICK D K, RABUCK A D, RAGHAVACHARI K, FORESMAN J B, ORTIZ J V, CUI Q, BABOUL A G, CLIFFORD S, CIOSLOWSKI J, STEFANOV B B, LIU G, LIASHENKO A, PISKORZ P, KOMAROMI I, MARTIN R L, FOX D J, KEITH T, AL-LAHAM M A, PENG C Y, NANAYAKKARA A, CHALLACOMBE M, GILL P M W, JOHNSON B, CHEN W, WONGM W, GONZALEZ C, POPLE J A. Gaussian Inc[J]. Wallingford CT, 2009.
    [28]
    HAY P J, WADT W R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals[J]. J Chem Phys, 1985, 82(1): 299-310. doi: 10.1063/1.448975
    [29]
    DESAI S K, NEUROCK M, KOURTAKIS K. A periodic density functional theory study of the dehydrogenation of methanol over Pt (111)[J]. J Phys Chem B, 2002, 106(10): 2559-2568. doi: 10.1021/jp0132984
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (71) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return