Volume 46 Issue 5
May  2018
Turn off MathJax
Article Contents
KANG Lei, WANG Hai-yan, SHAO He, SUN Na, WANG Yu-jia, YANG Zhan-xu. Study on the synthesis of composite NiO-ZnO nanowire adsorbent and its performance for desulfurization[J]. Journal of Fuel Chemistry and Technology, 2018, 46(5): 551-557.
Citation: KANG Lei, WANG Hai-yan, SHAO He, SUN Na, WANG Yu-jia, YANG Zhan-xu. Study on the synthesis of composite NiO-ZnO nanowire adsorbent and its performance for desulfurization[J]. Journal of Fuel Chemistry and Technology, 2018, 46(5): 551-557.

Study on the synthesis of composite NiO-ZnO nanowire adsorbent and its performance for desulfurization

Funds:

the National Natural Science Foundation of China 21401093

Natural Science Foundation of Liaoning 201202126

More Information
  • Corresponding author: WANG Hai-yan, Tel: 13941336296, E-mail: fswhy@126.com
  • Received Date: 2017-11-19
  • Rev Recd Date: 2018-02-23
  • Available Online: 2021-01-23
  • Publish Date: 2018-05-10
  • The composite NiO-ZnO nanowires for desulfurization were synthesized using hydrothermal method. The effects of the ratio of ethanol to water in the solvent used for the nanowire synthesis were studied. The phase structure and morphology of the nanowire adsorbents were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM). The desulfurization performance of the adsorbents were studied at the temperature of 350℃, pressure of 1.0 MPa, the volume space velocity of 6 h-1, and H2/oil volume ratio of 60. The results showed that the composite NiO-ZnO nanowire adsorbent has better morphology than others, the active catalytic site was determined to be Ni which seemed to have better dispersion and smaller particle size, and the Ni-Zn alloy preferred to desulfurization was formed, so its desulfurization performance was significantly improved. The desulfurization rate was increased up to 98%. After five circles of regeneration, the activity of the composite NiO-ZnO nanowire adsorbent can still maintain 90 h, which indicated that it possesses better reusability.
  • loading
  • [1]
    ULLAH R, BAI P, WU P, ETIM U J, ZHANG Z, HAN D, SUBHAN F, ULLAH S, ROOD M, YAN Z F. Superior performance of freeze-dried Ni/ZnO-Al2O3 adsorbent in the ultra-deep desulfurization of high sulfur model gasoline[J]. Fuel Process Technol, 2017, 156:505-514. doi: 10.1016/j.fuproc.2016.10.022
    [2]
    KONG A H, WEI Y Y, LI Y H. Reactive adsorption desulfurization over a Ni/ZnO adsorbent prepared by homogeneous precipitation[J]. Front Chem Sci Eng, 2013, 7(2):170-176. doi: 10.1007/s11705-013-1322-9
    [3]
    王广建, 李佳佳, 吴春泽, 王芳. TiO2-Al2O3复合载体的制备及Co-Mo/TiO2-Al2O3催化剂加氢脱硫性能的研究[J].燃料化学学报, 2016, 44(12):1518-1522. doi: 10.3969/j.issn.0253-2409.2016.12.016

    WANG Guang-jian, LI Jia-jia, WU Chun-ze, WANG Fang. Study on the preparation of TiO2-Al2O3 composite support and its application in Co-Mo/TiO2-Al2O3 catalyst for hydro-desulfurization[J]. J Fuel Chem Technol, 2016, 44(12):1518-1522. doi: 10.3969/j.issn.0253-2409.2016.12.016
    [4]
    AHMEDZEKI N S, ALHUSSAINI M M, ALNAAMA A A J, ALBAYATI I S. Reactive adsorption desulfurization by nanocrystalline ZnO/Zeolite a molecular sieves[J]. J Eng, 2017, 23(9):38-49. https://www.researchgate.net/profile/nada_Ahmedzeki3
    [5]
    TAWARA K, NISHIMURA T, IWANAMI H, NISHIMOTO T, HASUIKE T. New hydrodesulfurization catalyst for petroleum-fed fuel cell vehicles and cogenerations[J]. Ind Eng Chem Res, 2001, 40(10):2367-2370. doi: 10.1021/ie000453c
    [6]
    GE H, TANG M, WEN X D. Ni/ZnO nano sorbent for reactive adsorption desulfurization of refinery oil streams[M]//Applying nanotechnology to the desulfurization process in petroleum engineering. IGI Global, 2016:216-239. https://www.igi-global.com/chapter/nizno-nano-sorbent-for-reactive-adsorption-desulfurization-of-refinery-oil-streams/139162
    [7]
    HUANG L, QIN Z, WANG G, DU M, GE H, LI X, WANG J. A detailed study on the negative effect of residual sodium on the performance of Ni/ZnO adsorbent for diesel fuel desulfurization[J]. Ind Eng Chem Res, 2010, 49(10):4670-4675. doi: 10.1021/ie100293h
    [8]
    REN Z, GUO Y, WROBEL G, KNECHT D A, ZHANG Z, GAO H, GAO P X. Three dimensional koosh ball nanoarchitecture with a tunable magnetic core, fluorescent nanowire shell and enhanced photocatalytic property[J]. J Mater Chem, 2012, 22(14):6862-6868. doi: 10.1039/c2jm16489b
    [9]
    JIAN D, GAO P X, CAI W, ALLIMI B S, ALPAY S P, DING Y, BROOKS C. Synthesis, characterization, and photocatalytic properties of ZnO/(La, Sr) CoO3 composite nanorod arrays[J]. J Mater Chem, 2009, 19(7):970-975. doi: 10.1039/b817235h
    [10]
    REN Z, BOTU V, WANG S, MENG Y, SONG W, GUO Y, GAO P X. Monolithically integrated spinel MxCo3-xO4 (M=Co, Ni, Zn) nanoarray catalysts:Scalable synthesis and cation manipulation for tunable low-temperature CH4 and CO oxidation[J]. Angew Chem Int Edit, 2014, 53(28):7223-7227. doi: 10.1002/anie.201403461
    [11]
    WANG S, WU Y, MIAO R, ZHANG M, LU X, ZHANG B, SIUB S L. Scalable continuous flow synthesis of ZnO nanorod arrays in 3-D ceramic honeycomb substrates for low-temperature desulfurization[J]. Crystengcomm, 2017, 19(34):5128-5136. doi: 10.1039/C7CE00921F
    [12]
    YANG P, YAN H, MAO S, RUSSO R, JOHNSON J, SAYKALLY R, CHOI H J. Controlled growth of ZnO nanowires and their optical properties[J]. Adv Funct Mater, 2002, 12(5):323-331. doi: 10.1002/1616-3028(20020517)12:5<323::AID-ADFM323>3.0.CO;2-G
    [13]
    GUPTA M, HE J, NGUYEN T, PETZOLD F, FONSECA D, JASINSKI J B, SUNKARA M K. Nanowire catalysts for ultra-deep hydro-desulfurization and aromatic hydrogenation[J]. Appl Catal B:Environ, 2016, 180:246-254. doi: 10.1016/j.apcatb.2015.06.029
    [14]
    PETZOLD F G, JASINSKI J, CLARK E L, KIM J, ABSHER J, TOUFAR H, SUNKARA M K. Nickel supported on zinc oxide nanowires as advanced hydrodesulfurization catalysts[J]. Catal Today, 2012, 198(1):219-227. doi: 10.1016/j.cattod.2012.05.030
    [15]

    Xiang Qun, Pan Qing-yi, Xu Jian-qiang. Solvothermal synthesis of ZnO nanowires[J]. Chin J Inorg Chem, 2007, 23(2):369-372. https://www.researchgate.net/profile/Jiaqiang_Xu3/publication/291850424_Solvothermal_synthesis_of_ZnO_nanowires/links/57415ba608ae9f741b34e7ac.pdf?origin=publication_detail
    [16]
    LI W J, SHI E W, ZHONG W Z, YIN Z W. Growth mechanism and growth habit of oxide crystals[J]. J Cryst Growth, 1999, 203(1):186-196. https://www.sciencedirect.com/science/article/pii/S0022024899000767
    [17]
    KAR S, DEV A, CHAUDHURI S. Simple solvothermal route to synthesize ZnO nanosheets, nanonails, and well-aligned nanorod arrays[J]. J Phys Chem B, 2006, 110(36):17848-17853. doi: 10.1021/jp0629902
    [18]
    ZHANG Z, SHAO C, LI X, WANG C, ZHANG M, LIU Y. Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity[J]. ACS Appl Mat Interfaces, 2010, 2(10):2915-2923. doi: 10.1021/am100618h
    [19]
    YADAV R S, PANDEY A C, SANJAY S S. ZnO porous structures synthesized by CTAB-assisted hydrothermal process[J]. Struct Chem, 2007, 18(6):1001-1004. doi: 10.1007/s11224-007-9251-1
    [20]
    ZONG Y, LI Z, WANG X, MA J, MEN Y. Synthesis and high photocatalytic activity of Eu-doped ZnO nanoparticles[J]. Ceram Int, 2014, 40(7):10375-10382. doi: 10.1016/j.ceramint.2014.02.123
    [21]
    CASARIN M C, MACCATO A, VITTADINI. An LCAO-LDF study of the chemisorption of H2O and H2S on ZnO(0001) and ZnO(1010)[J]. Surf Sci, 1997, 377:587-591. https://www.sciencedirect.com/science/article/pii/0039602895011579
    [22]
    ZHANG Y, YANG Y, HAN H, YANG M, WANG L, ZHANG Y, LI C. Ultra-deep desulfurization via reactive adsorption on Ni/ZnO:The effect of ZnO particle size on the adsorption performance[J]. Appl Catal B:Environ, 2012, 119:13-19. https://www.sciencedirect.com/science/article/pii/S0926337312000525
    [23]
    BABICH I V, MOULIJN J A. Science and technology of novel processes for deep desulfurization of oil refinery streams:A review[J]. Fuel, 2003, 82(6):607-631. doi: 10.1016/S0016-2361(02)00324-1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (103) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return