Volume 46 Issue 11
Nov.  2018
Turn off MathJax
Article Contents
Agüero Fabiola Nerina, Alonso Jose Antonio, Fernández-Díaz Maria Teresa, Cadus Luis Eduardo. Ni-based catalysts obtained from perovskites oxides for ethanol steam reforming[J]. Journal of Fuel Chemistry and Technology, 2018, 46(11): 1332-1341.
Citation: Agüero Fabiola Nerina, Alonso Jose Antonio, Fernández-Díaz Maria Teresa, Cadus Luis Eduardo. Ni-based catalysts obtained from perovskites oxides for ethanol steam reforming[J]. Journal of Fuel Chemistry and Technology, 2018, 46(11): 1332-1341.

Ni-based catalysts obtained from perovskites oxides for ethanol steam reforming

More Information
  • Corresponding author: Luis Eduardo Cadus, E-mail:lcadus@unsl.edu.ar
  • Received Date: 2018-06-29
  • Rev Recd Date: 2018-09-19
  • Available Online: 2021-01-23
  • Publish Date: 2018-11-10
  • Perovskites as host structures of cations were used in order to generate in situ active and stable catalysts for ethanol steam reforming. For this purpose, La1-xMgxAl1-yNiyO3 (x=0.1; y=0, 0.1, 0.2, 0.3) perovskites were synthetized by the citrate method. Ni segregation is evident for a substitution level higher than 0.2. The segregation of Ni as NiO generated species interacts with different metal-support after the reduction step. The y=0.1 catalyst presents the highest H2 yield value about 85% during reaction time, with low mean values of CH4 and CO selectivities of 3.4% and 11%, respectively and a low carbon formation. The better performance of y=0.1 catalyst could be attributed to the minor proportion of segregated phases, thus a controlled expulsion of Ni is successfully reached.
  • 本文的英文电子版由Elsevier出版社在ScienceDirect上出版(http://www.sciencedirect.com/science/journal/18725813).
  • loading
  • [1]
    CHORKENDORFF I, NIEMANTSVERDRIET J W. Concepts of Modern Catalysis and Kinetics[M]. Wiley Editorial. 2003.
    [2]
    ARAMOUNI A K, TOUMA J G, TARBOUSH B A, ZEAITER J M. Catalyst design for dry reforming of methane:Analysis review[J]. Renewable Sustainable Energy Rev, 2017, 82(part 3):2570-2585.
    [3]
    CHOI S O, MOON S H. Performance of La1-xCexFe0.7Ni0.3O3 perovskite catalysts for methane steam reforming[J]. Catal Today, 2009, 146(1):148-153. http://www.sciencedirect.com/science/article/pii/S0920586109001187
    [4]
    PALCHEVA R, OLSBYE U, PALCUT M, RAUWEL P, TYULIEV G, VELINOV N, FJELLVÄG H H, Rh promoted La0.75Sr0.25(Fe0.8Co0.2)1-xGaxO3-δ perovskite catalysts:Characterization and catalytic performance for methane partial oxidation to synthesis gas[J]. Appl Surf Sci, 2015, 357(part A):45-54. http://adsabs.harvard.edu/abs/2015ApSS..357...45P
    [5]
    NI M, LEUNG D, LEUNG M, A review on reforming bio-ethanol for hydrogen production[J]. Int J Hydrogen Energy, 2007, 32(15):3238-3247. doi: 10.1016/j.ijhydene.2007.04.038
    [6]
    PEREIRA E B, RAMÍREZ D E L A, PISCINA P, MARTI S, HOMS N. H2 production by oxidative steam reforming of ethanol over K promoted Co-Rh/CeO2-ZrO2 catalysts[J]. Energy Environ Sci, 2010, 3:487-493. doi: 10.1039/b924624j
    [7]
    HAN X, YU Y, HE H, SHAN W. Hydrogen production from oxidative steam reforming of ethanol over rhodium catalysts supported on Ce-La solid solution[J]. Int J Hydrogen Energy, 2013, 38(25):10293-10304. doi: 10.1016/j.ijhydene.2013.05.137
    [8]
    COSTA L O, VASCONCELOS S M, PINTO A L, SILVA A M, MATTOS L V, NORONHA F B. Rh/CeO2 catalyst preparation and characterization for hydrogen production from ethanol partial oxidation[J]. J Mater Sci, 2008, 43(2):440-449. doi: 10.1007/s10853-007-1982-2
    [9]
    KRALEVA E, SOKOLOV S, NASILLO G, BENTRUP U, EHRICH H. Catalytic performance of CoAlZn and NiAlZn mixed oxides in hydrogen production by bio-ethanol partial oxidation[J]. Int J Hydrogen Energy, 2014, 39(1):209-220. doi: 10.1016/j.ijhydene.2013.10.072
    [10]
    BEYHAN S, LÉGER J M, KADIRGAN F. Understanding the influence of Ni, Co, Rh and Pd additionto PtSn/C catalyst for the oxidation of ethanol by in situ Fourier transform infrared spectroscopy[J]. Appl Catal B:Environ, 2014, 144:66-74. doi: 10.1016/j.apcatb.2013.07.020
    [11]
    CHEN H Q, YU H, YANG G X, PENG F, WANG H J, WANG J. Auto-thermal ethanol micro-reformer with a structural Ir/La2O3/ZrO2 catalyst for hydrogen production[J]. Chem Eng J, 2011, 167(1):322-327. doi: 10.1016/j.cej.2010.12.077
    [12]
    SILVA A M, COSTA L O, BARANDAS A P, BORGES L E, MATTOS L V, NORONHA F B. Effect of the metal nature on the reaction mechanism of the partial oxidation of ethanol over CeO2-supported Pt and Rh catalysts[J]. Catal Today, 2008, 133-135:755-761. doi: 10.1016/j.cattod.2007.12.103
    [13]
    FRUSTERI F, FRENI S. Bio-ethanol, a suitable fuel to produce hydrogen for a molten carbonate fuel cell[J]. J Power Sources, 2007, 173(1):200-209. doi: 10.1016/j.jpowsour.2007.04.065
    [14]
    BION N, EPRON F, DUPREZ D. Bioethanol reforming for H2 production. A comparison with hydrocarbon reforming[J]. Catalysis, 2010, 22:1-55. http://pubs.rsc.org/en/Content/Chapter/9781847559630-00001/978-1-84755-963-0
    [15]
    HARYANTO A, FERNANDO S, MURALI N, ADHIKARI S. Current status of hydrogen production techniques by steam reforming of ethanol:A Review[J]. Energy Fuels, 2005, 19(5):2098-2106. doi: 10.1021/ef0500538
    [16]
    BENGAARD H S, NORSKOV J K, SEHESTED J, CLAUSEN B S, NIELSEN L P, MOLENBROEK A M, ROSTRUP-NIELSEN J R. Steam reforming and graphite formation on Ni catalysts[J]. J Catal, 2002, 209(2):365-384. doi: 10.1006/jcat.2002.3579
    [17]
    BOROWIECKI T. Nickel catalysts for steam reforming of hydrocarbons; size of crystallites and resistance to coking[J]. Appl Catal, 1982, 4:223-231. doi: 10.1016/0166-9834(82)80104-8
    [18]
    AGÜERO F, MORALES M R, LARREGOLA S, IZURIETA E, LOPEZ E, CADUS L E. La1-xCaxAl1-yNiyO3 perovskites used as precursors of nickel based catalysts for ethanol steam reforming[J]. Int J Hydrogen Energy, 2015, 40:15510. doi: 10.1016/j.ijhydene.2015.08.051
    [19]
    COURTY P, AJOT H, MARCILLY C, DELMON B. Oxydes mixtes ou en solution solide sous forme très divisé e obtenus par décomposition thermique de précurseurs amorphes[J]. Powder Technol, 1973, 7(1):21-38. doi: 10.1016/0032-5910(73)80005-1
    [20]
    RIETVELD H M, A profile refinement method for nuclear and magnetic structures[J]. Appl Crystallogr, 1969, 2:65-71. doi: 10.1107/S0021889869006558
    [21]
    RODRIGUEZ CARVAJAL. Recent advances in magnetic-structure determination by neutron power diffraction[J]. Phys B, 1993, 192(1/2):55-69. http://adsabs.harvard.edu/abs/1993CCM....41..738B
    [22]
    WU Y J, DÍAZ ALVARADO F, SANTOS J C, GRACIA F, CUNHA A F, RODRIGUES A E. Sorption-enhanced steam reforming of ethanol:thermodynamic comparison of CO2 sorbents[J]. Chem Eng Technol, 2012, 35(5):847-858. doi: 10.1002/ceat.v35.5
    [23]
    CUNHA A F, WU Y J, DÍAZ ALVARADO F A, SANTOS J C, VAIDYA P D, RODRIGUES A E. CAN, Steam reforming of ethanol on a Ni/Al2O3 catalyst coupled with a hydrotalcite-like sorbent in a multilayer pattern for CO2 uptake[J]. Can J Chem Eng, 2012, 90(6):1514-1526. doi: 10.1002/cjce.v90.6
    [24]
    SÁNCHEZ-SÁNCHEZ M C, NAVARRO R M, FIERRO J L G. Ethanol steam reforming over Ni/MxOy-Al2O3 (M-Ce, La, Zr and Mg) catalysts:influence of support on the Hydrogen production[J]. Int J Hydrogen Energy, 2007, 32:1462. doi: 10.1016/j.ijhydene.2006.10.025
    [25]
    HARDINI D, YOON C, HON J, YOON S, NAM S, LIM T. Influence of preparation methods and OSC on activity and stability[J]. Catal Lett, 2012, 142(2):205-212. doi: 10.1007/s10562-011-0746-4
    [26]
    RIBEIRO N, NETO R, MOYA S, SOUZA M, SCHMAL M. Synthesis of NiAl2O4 with high surface area as precursor of Ni nanoparticles for hydrogen production[J]. Int J Hydrogen Energy, 2010, 35(21):11725-11732. doi: 10.1016/j.ijhydene.2010.08.024
    [27]
    GALLEGO G S, MONDRAGÓN F, BARRAULT J, TATIBOUËT J-M, BATIOT-DUPEYRAT C. CO2 reforming of CH4 over La-Ni based perovskite precursors[J]. Appl Catal A:Gen, 2006, 311(1):164-171.
    [28]
    SIERRA GALLEGO G, MONDRAGON F, TATIBOUËT J-M, BARRAULT J BATIOT-DUPEYRAT, C, Carbon dioxide reforming of methane over La2NiO4 as catalyst precursor and characterization of carbon deposition[J]. Catal Today, 2008, 133-135:200-209. doi: 10.1016/j.cattod.2007.12.075
    [29]
    JIRATOVA K, MIKULOVA J, KLEMPA J, GRYGAR T, BASTL Z, KOVANDA F. Modification of Co-Mn-Al mixed oxide with potassium and its effect on deep oxidation of VOC[J]. Appl Catal A:Gen, 2009, 361:106-116. doi: 10.1016/j.apcata.2009.04.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (100) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return