Volume 46 Issue 7
Jul.  2018
Turn off MathJax
Article Contents
LUO Wei, XUE Ji-long, MENG Yue, QIAN Meng-dan, FANG Lei, XIA Sheng-jie, NI Zhe-ming. Adsorption and selective hydrogenation mechanism of cinnamaldehyde on Pt(111) surface and Pt14 cluster[J]. Journal of Fuel Chemistry and Technology, 2018, 46(7): 818-825.
Citation: LUO Wei, XUE Ji-long, MENG Yue, QIAN Meng-dan, FANG Lei, XIA Sheng-jie, NI Zhe-ming. Adsorption and selective hydrogenation mechanism of cinnamaldehyde on Pt(111) surface and Pt14 cluster[J]. Journal of Fuel Chemistry and Technology, 2018, 46(7): 818-825.

Adsorption and selective hydrogenation mechanism of cinnamaldehyde on Pt(111) surface and Pt14 cluster

Funds:

the National Natural Science Foundation of China 21503188

the Zhejiang Provincial Natural Science Foundation of China LQ15B030002

More Information
  • Corresponding author: XIA Sheng-jie, Tel:+86-13336087338, Fax:0571-88320373, E-mail:jchx@zjut.edu.cn; NI Zhe-ming, E-mail:xiasj@zjut.edu.cn
  • Received Date: 2018-03-12
  • Rev Recd Date: 2018-05-24
  • Available Online: 2021-01-23
  • Publish Date: 2018-07-10
  • The adsorption and the mechanism for selective hydrogenation of cinnamaldehyde (CAL) on Pt (111) surface and Pt14 cluster were investigated by using density functional theory (DFT). The results illustrate that the synergistic adsorption of CAL molecule on Pt (111) surface with C=O and C=C bonds is most stable at the Hcp position, whereas most stable adsorption of CAL appears on the Pt14 cluster with C=C bond; the adsorption of CAL on the Pt14 cluster is stronger than that on Pt(111) surface. The reaction barriers for each elementary reaction were determined from the transition state search and the results suggest that CAL was preferentially hydrogenated at C=O on the Pt(111) surface and Pt14 cluster, forming cinnamyl alcohol (COL); the hydrogenation of O atom takes the priority. Both Pt plate and cluster have good selectivity for hydrogenation of CAL to COL. The reaction barrier of CAL hydrogenation on Pt(111) surface is lower than that on Pt14 cluster, indicating that the catalytic activity and selectivity of CAL hydrogenation are closely related to the structure of Pt catalysts; Pt(111) surface is more favorable for catalyzing the hydrogenation of CAL to COL.
  • loading
  • [1]
    高爽, 陈晓陆, 汪建江, 杜国丰, 李振, 王振旅. Ru基催化剂在肉桂醛选择性加氢反应中的研究[J].石油化工, 2017, 46(7):862-868. http://www.whxb.pku.edu.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=29122

    GAO Shuang, CHEN Xiao-lu, WANG Jian-jiang, DU Guo-feng, LI Zhen, WANG Zhen-lü. Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol on Ru-based catalysts[J]. Petrochem Technol, 2017, 46(7):862-868. http://www.whxb.pku.edu.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=29122
    [2]
    CLAUS P, BRULCKNER A, MOHR C, HOFMEISTER H. Supported gold nanoparticles from quantum dot to mesoscopic size scale:Effect of electronic and structural properties on catalytic hydrogenation of conjugated functional groups[J]. J Am Chem Soc, 2000, 122(46):11430-11439. doi: 10.1021/ja0012974
    [3]
    BUS E, PRINS R, BOKHOVEN J A V. Origin of the cluster-size effect in the hydrogenation of cinnamaldehyde over supported Au catalysts[J]. Catal Commun, 2007, 8(9):1397-1402 doi: 10.1016/j.catcom.2006.11.040
    [4]
    HISCHL R, DELBECQ F, SAUTET P, HAFNER J. Adsorption of unsaturated aldehydes on the (111) surface of a Pt-Fe alloy catalyst from first principles[J]. J Catal, 2003, 217(2):354-366. doi: 10.1016/S0021-9517(03)00057-5
    [5]
    李辉, 马春景, 李和兴. Ni-Co-B非晶态合金催化肉桂醛常压加氢制3-苯丙醛的研究[J].化学学报, 2006, 64(19):1947-1953. doi: 10.3321/j.issn:0567-7351.2006.19.002

    LI Hui, MA Chun-jing, LI He-xing. Study on cinnamaldehyde hydrogenation to 3-phenylpropyl aldehyde at atmospheric pressure over Ni-Co-B amorphous alloys[J]. Acta Chim Sin, 2006, 64(19):1947-1953. doi: 10.3321/j.issn:0567-7351.2006.19.002
    [6]
    Ni X J, ZHANG B S, LI C, PANG M, SU D S, WILLIAMS C T, LIANG C H. Microwave-assisted green synthesis of uniform Ru nanoparticles supported on non-functional carbon nanotubes for cinnamaldehyde hydrogenation[J]. Catal Commun, 2012, 24(24):65-69. http://cn.bing.com/academic/profile?id=db3029e7784109e921a1ccf0f5ea7ba9&encoded=0&v=paper_preview&mkt=zh-cn
    [7]
    MARCHI A J, GORDO D A, TRASARTI A F, APESTEGUIA C R. Liquid phase hydrogenation of cinnamaldehyde on Cu-based catalysts[J]. Appl Catal A:Gen, 2003, 249(1):53-67. doi: 10.1016/S0926-860X(03)00199-6
    [8]
    JOSEPH ANTONY RAJ A, PRAKASH M G, ELANGOVAN T, VISWANATHAN B. Selective hydrogenation of cinnamaldehyde over cobalt supported on alumina, silica and titania[J]. Catal Lett, 2012, 142(1):87-94. doi: 10.1007/s10562-011-0693-0
    [9]
    LUO Q Q, WANG T, BELLER R, JIAO H J. Acrolein hydrogenation on Ni(111)[J]. J Phys Chem C, 2013, 117(24):12715-12724. doi: 10.1021/jp403972b
    [10]
    钱梦丹, 薛继龙, 夏盛杰, 倪哲明, 蒋军辉, 曹勇勇. Pd/Cu(111)双金属表面催化糠醛脱碳及加氢的反应机理[J].燃料化学学报, 2017, 45(1):34-42. http://www.ccspublishing.org.cn/article/id/180e59be-1252-4094-8e4f-479caf47d7d4

    QIAN Meng-dan, XUE Ji-long, XIA Sheng-jie, NI Zhe-ming, JIANG Jun-hui, CAO Yong-yong. Decarbonylation and hydrogenation reaction of furfural on Pd/Cu(111) surface[J]. J Fuel Chem Technol, 2017, 45(1):34-42. http://www.ccspublishing.org.cn/article/id/180e59be-1252-4094-8e4f-479caf47d7d4
    [11]
    YUAN E, WANG L, ZHANG X W, FENG R, WU C, LI G Z. Density functional theory analysis of anthraquinone derivative hydrogenation over palladium catalyst[J]. Chem Phys Chem, 2016, 17(23):3974-3984. doi: 10.1002/cphc.201600874
    [12]
    ROJAS H, DIAZ G, MARTINE J J, CASTANEDA C, GOMEZ-CORTES A, ARENAS-ALATORRE J. Hydrogenation of α, β-unsaturated carbonyl compounds over Au and Ir supported on SiO2[J]. J Mol Catal A:Chem, 2012, 363(364):122-128. https://www.sciencedirect.com/science/article/pii/S1381116912001823
    [13]
    IDE M S, HAO B, NEUROCK M, DAVIS R J. Mechanistic insights on the hydrogenation of α, β-unsaturated ketones and aldehydes to unsaturated alcohols over metal catalysts[J]. ACS Catal, 2012, 2(4):671-683. doi: 10.1021/cs200567z
    [14]
    ZANELLA R, LOUIS C, GIORGIO S, TOUROUDE R. Crotonaldehyde hydrogenation by gold supported on TiO2:Structure sensitivity and mechanism[J]. J Catal, 2004, 223(2):328-339. doi: 10.1016/j.jcat.2004.01.033
    [15]
    LOFFREDA D, DELLECQ F, VIGNE F, SAUTET P. Catalytic hydrogenation of unsaturated aldehydes on Pt(111):Understanding the selectivity from first-principles calculations[J]. Angew Chem Int Ed, 2005, 44(33):5279-5282. doi: 10.1002/(ISSN)1521-3773
    [16]
    HAN Q, LIU Y F, WANG D, YUAN F L, NIU X Y, ZHU Y J. Effect of carbon nanosheets with different graphitization degree as support of noble metal on selective hydrogenation of cinnamaldehyde[J]. Rsc Adv, 2016, 6(100):98356-98364. doi: 10.1039/C6RA17979G
    [17]
    ABID M, PAUL-BONCOR V, TOUROUDE R. Pt/CeO2 catalysts in crotonaldehyde hydrogenation:Selectivity, metal particle size and SMSI states[J].Appl Catal A:Gen, 2006, 297(1):48-59. doi: 10.1016/j.apcata.2005.08.048
    [18]
    MAHATA N, GONCALVE F, PEREIRA M F R, FIGUEIREDO J L. Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over mesoporous carbon supported Fe and Zn promoted Pt catalyst[J]. Appl Catal A:Gen, 2008, 339(2):159-168. doi: 10.1016/j.apcata.2008.01.023
    [19]
    TEDDY J, FALQUI A, CORRIAS A, CARTA D, LECANTE P, GERBER I, SERP P. Influence of particles alloying on the performances of Pt-Ru/CNT catalysts for selective hydrogenation[J]. J Catal, 2011, 278(1):59-70. doi: 10.1016/j.jcat.2010.11.016
    [20]
    JOB N, PIRARD R, MARIEN J, PIRARD J P. Porous carbon xerogels with texture tailored by pH control during sol-gel process[J]. Carbon, 2004, 42(3):619-628. doi: 10.1016/j.carbon.2003.12.072
    [21]
    DURNDELL L J, PARLETT C M, HONDOW N S, ISAACS M A, WILSON K, LEE A F. Selectivity control in Pt-catalyzed cinnamaldehyde hydrogenation[J]. Sci Rep, 2015, 5:9425. doi: 10.1038/srep09425
    [22]
    TUOKKO S, PIHKO P M, HONKALA K. First principles calculations for hydrogenation of acrolein on Pd and Pt:Chemoselectivity depends on steric effects on the surface[J]. Angew Chem Int Ed, 2016, 55(5):1670-1674. doi: 10.1002/anie.201507631
    [23]
    CAO X M, BURCH R, HARDCRE C, HU P. Reaction mechanisms of crotonaldehyde hydrogenation on Pt(111):Density functional theory and microkinetic modeling[J]. J Phys Chem C, 2011, 115(40):19819-19827. doi: 10.1021/jp206520w
    [24]
    YANG X, WANG A, WANG X, ZHANG T, HAN K, LI J. Combined experimental and theoretical investigation on the selectivities of Ag, Au, and Pt catalysts for hydrogenation of crotonaldehyde[J]. J Phys Chem C, 2009, 113(49):97-102. http://cn.bing.com/academic/profile?id=7dd28611e01fece5ddd36f7c71d8e047&encoded=0&v=paper_preview&mkt=zh-cn
    [25]
    LI L C, WANG W, WANG X L, ZHSNG L. Investigating the mechanism of the selective hydrogenation reaction of cinnamaldehyde catalyzed by Ptn clusters[J]. J Mol Model, 2016, 22(8):1-11. http://cn.bing.com/academic/profile?id=eddbbe0a41030118142d3cd6c1f53e7c&encoded=0&v=paper_preview&mkt=zh-cn
    [26]
    JIANG Z, QIN P, FANG T. Theoretical study of NH3 decomposition on Pd-Cu(111) and Cu-Pd (111) surfaces:A comparison with clean Pd(111) and Cu(111)[J]. Appl Surf Sci, 2016, 371:337-342. doi: 10.1016/j.apsusc.2016.02.231
    [27]
    GOVIND N, PETERSEN M, FITZGERAID G, KING-SMITH D, ANDZELM J. A generalized synchronous transit method for transition state location[J]. Comput Mater Sci, 2003, 28(2):250-258. http://cn.bing.com/academic/profile?id=a5fdb4a1f1364334c36630ca4dbbf11e&encoded=0&v=paper_preview&mkt=zh-cn
    [28]
    肖雪春, 施炜, 倪哲明. Au(111)面上肉桂醛的选择性加氢机理[J].物理化学学报, 2014, 30(8):1456-1464. doi: 10.3866/PKU.WHXB201406091

    XIAO Xue-chun, SHI Wi, NI Zhe-ming. Selective hydrogenation mechanism of cinnamaldehyde on Au(111) surface[J]. Acta Phys-Chim Sin, 2014, 30(8):1456-1464. doi: 10.3866/PKU.WHXB201406091
    [29]
    蒋军辉, 钱梦丹, 薛继龙, 夏盛杰, 倪哲明, 邵蒙蒙. In-Au(111)和Ir-Au(111)合金表面的性质及其对巴豆醛的吸附比较[J].物理化学学报, 2016, 32(12):2932-2940. doi: 10.3866/PKU.WHXB201609302

    JIANG Jun-hui, QIAN Meng-dan, XUE Ji-long, XIA Sheng-jie, NI Zhe-ming, SHAO Meng-meng. Comparison of properties of In-Au(111) and Ir-Au(111) alloy surfaces, and their adsorption to crotonaldehyde[J]. Acta Phys-Chim Sin, 2016, 32(12):2932-2940. doi: 10.3866/PKU.WHXB201609302
    [30]
    YANG X F, WANG A Q, WANG X D, ZHANG T, HAN K L, LI J. Combined experimental and theoretical investigation on the selectivities of Ag, Au, and Pt catalysts for hydrogenation of crotonaldehyde[J]. J Phys Chem C, 2009, 113(49):20918-20926. doi: 10.1021/jp905687g
    [31]
    PIRILLO S, LOPEZ-CORRAL I, GERMAN E, JUAN A. Density functional study of acrolein adsorption on Pt (111)[J]. Vacuum, 2014, 99(1):259-264. http://cn.bing.com/academic/profile?id=72bd162da6be599da890768026ef645d&encoded=0&v=paper_preview&mkt=zh-cn
    [32]
    LIU R Q. Adsorption and dissociation of H2O on Au(111) surface:A DFT study[J]. Comput Theor Chem, 2013, 1019(1):141-145. https://www.researchgate.net/publication/270919912_Adsorption_and_dissociation_of_H2O_on_Au111_surface_A_DFT_study
    [33]
    WEI S P, ZHAO Y T, FAN G L, YANG L, LI F. Structure-dependent selective hydrogenation of cinnamaldehyde over high-surface-area CeO2-ZrO2 composites supported Pt nanoparticles[J]. Chem Eng J, 2017, 322(15):234-245. https://www.sciencedirect.com/science/article/pii/S1385894717305533
    [34]
    LIU H, MEI Q, LI S, YANG Y, WANG Y, LIU H, ZHENG L, AN P, ZHANG J, HAN B. Selective hydrogenation of unsaturated aldehydes over Pt nanoparticles promoted by the cooperation of steric and electronic effects[J]. Chem Commun, 2018, 54(8):908-911. doi: 10.1039/C7CC08942B
    [35]
    YANG B, CHERKASOV N, HUBAND S, WALKER D, WALTON R I, REBROV E. Highly selective continuous flow hydrogenation of cinnamaldehyde to cinnamyl alcohol in a Pt/SiO2 coated tube reactor[J]. Catalysts, 2018, 8(2):58. doi: 10.3390/catal8020058
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (115) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return