Volume 47 Issue 7
Jul.  2019
Turn off MathJax
Article Contents
WU Jian-bing, SHI Rui-ping, QIN Zhang-feng, LIU Huan, LI Zhi-kai, ZHU Hua-qing, ZHAO Yong-xiang, WANG Jian-guo. Selective oxidation of methanol to methyl formate over bimetallic Au-Pd nanoparticles supported on SiO2[J]. Journal of Fuel Chemistry and Technology, 2019, 47(7): 780-790.
Citation: WU Jian-bing, SHI Rui-ping, QIN Zhang-feng, LIU Huan, LI Zhi-kai, ZHU Hua-qing, ZHAO Yong-xiang, WANG Jian-guo. Selective oxidation of methanol to methyl formate over bimetallic Au-Pd nanoparticles supported on SiO2[J]. Journal of Fuel Chemistry and Technology, 2019, 47(7): 780-790.

Selective oxidation of methanol to methyl formate over bimetallic Au-Pd nanoparticles supported on SiO2

Funds:

the National Key R & D Program of China 2018YFB0604804

the National Natural Science Foundation of China 21603254

the National Natural Science Foundation of China 21703127

the National Natural Science Foundation of China 21703276

the Strategic Program of Coal-based Technology of Shanxi Province MQ2014-11

the Strategic Program of Coal-based Technology of Shanxi Province MQ2014-10

the Key Research Program of the Chinese Academy of Sciences KFZD-SW-410

More Information
  • Corresponding author: QIN Zhang-feng, Tel: 86-351-4046092, Fax: 86-351-4041153, E-mails: qzhf@sxicc.ac.cn; WANG Jian-guo, E-mails: iccjgw@sxicc.ac.cn
  • Received Date: 2019-03-02
  • Rev Recd Date: 2019-04-05
  • Available Online: 2021-01-23
  • Publish Date: 2019-07-10
  • Selective oxidation of methanol to methyl formate (MF) is one of the most attractive processes to get valuable methanol-downstream products, where the supported Au and Pd catalysts were proved rather effective at low temperature. To search for highly active, regenerable and practical catalysts as well as to reveal the synergy of Au-Pd and reaction mechanism for the methanol oxidation, a series of silica supported Au-Pd nanoparticles (Au-Pd/SiO2) were prepared and their catalytic performance in the oxidation of methanol to MF with molecular oxygen was investigated in this work. The results indicate that the Au2-Pd1/SiO2 catalyst with an Au+Pd loading of only 0.6% and a Au/Pd mass ratio of 2 exhibits excellent performance in the methanol oxidation with oxygen; the conversion of methanol over Au2-Pd1/SiO2 reaches 57.0% at 130℃, with a selectivity of 72.7% to MF. Various characterization results illustrate that the Au-Pd bimetallic nanoparticles (2-4 nm) are highly dispersed on the silica surface, inclined to take a twinned structure and present the (111) planes, which may contribute to the high activity of Au-Pd/SiO2 in the oxidation of methanol to MF. A possible reaction mechanism was proposed on the basis of DRIFTS results:methanol was first activated by surface oxygen on the interface of Au-Pd nanoparticles, forming the chemisorbed methoxy species; the methoxy species was then deprotonated to adsorbed formaldehyde species, which reacted with another methoxy species, producing MF by nucleophilic attack and subsequent β-H elimination.
  • loading
  • [1]
    GEÂRARD E, GOÈTZ H, PELLEGRINI S, CASTANET Y, MORTREUX A. Epoxide-tertiary amine combinations as efficient catalysts for methanol carbonylation into methyl formate in the presence of carbon dioxide[J]. Appl Catal A:Gen, 1998, 170:297-306. doi: 10.1016/S0926-860X(98)00060-X
    [2]
    LI N, WANG S B, SUN YH, LI S G. First principles studies on the selectivity of dimethoxymethane and methyl formate in methanol oxidation over V2O5/TiO2-based catalysts[J]. Phys Chem Chem Phys, 2017, 19:19393-19406. doi: 10.1039/C7CP02326J
    [3]
    KAICHEV V V, POPOVA G YA, CHESALOV YU A, SARAEV A A, ZEMLYANOV D Y, BELOSHAPKIN S A, KNOP-GERICKE A, SCHLÖGL R, ANDRUSHKEVICH T V, BUKHTIYAROV V I. Selective oxidation of methanol to form dimethoxymethane and methyl formate over a monolayer V2O5/TiO2 catalyst[J]. J Catal, 2014, 311:59-70. doi: 10.1016/j.jcat.2013.10.026
    [4]
    ZHAO Y B, QIN Z F, WANG G F, DONG M, HUANG L C, WU Z W, FAN W B, WANG J G. Catalytic performance of V2O5/ZrO2-Al2O3 for methanol oxidation[J]. Fuel, 2013, 104:22-27. doi: 10.1016/j.fuel.2010.03.008
    [5]
    LI W Z, LIU H C, IGLESIA E. Structures and properties of zirconia-supported ruthenium oxide catalysts for the selective oxidation of methanol to methyl formate[J]. J Phys Chem B, 2006, 110:23337-23342. doi: 10.1021/jp0648689
    [6]
    AI M. The production of methyl formate by the vapor-phase oxidation of methanol[J]. J Catal, 1982, 77:279-288. doi: 10.1016/0021-9517(82)90168-3
    [7]
    LIU G B, ZHANG Q D, HAN Y Z, TSUBAKI N, TAN Y S. Low-temperature oxidation of dimethyl ether to methyl formate with high selectivity over MoO3-SnO2 catalysts[J]. J Fuel Chem Technol, 2013, 41(2):223-227. doi: 10.1016/S1872-5813(13)60014-6
    [8]
    LIU J L, ZHAN E S, CAI W J, LI J, SHEN W J. Methanol selective oxidation to methyl formate over ReOx/CeO2 catalysts[J]. Catal Lett, 2008, 120(3/4):274-280.
    [9]
    LIU H C, IGLESIA E. Effects of support on bifunctional methanol oxidation pathways catalyzed by polyoxometallate Keggin clusters[J]. J Catal, 2004, 223(1):16l-169. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b44f334e34e211dd3b2e78f6c86c101e
    [10]
    WOJCIESZAK R, GHAZZAL M N, GAIGNEAUX E M, RUIZ P. Oxidation of methanol to methyl formate over supported Pd nanoparticles:Insights into the reaction mechanism at low temperature[J]. Catal Sci Technol, 2014, 4(9):3298-3305. doi: 10.1039/C4CY00531G
    [11]
    WANG R Y, WU Z W, CHEN C M, QIN Z F, ZHU H Q, WANG G F, WANG H, WU C M, DONG W W, FAN W B, WANG J G. Graphene-supported Au-Pd bimetallic nanoparticles with excellent catalytic performance in selective oxidation of methanol to methyl formate[J]. Chem Commun, 2013, 49(74):8250-8252. doi: 10.1039/c3cc43948h
    [12]
    WHITING G T, KONDRAT S A, HAMMOND C, DIMITRATOS N, HE Q, MORGAN D J, DUMMER N F, BARTLEY J K, KIELY C J, TAYLOR S H, HUTCHINGS G J. Methyl formate formation from methanol oxidation using supported gold-palladium nanoparticles[J]. ACS Catal, 2015, 5:637-644. doi: 10.1021/cs501728r
    [13]
    CHEN Q B, LUO L T. Effects of reductant on catalytic performance of Au-Pd/CeO2 catalysts for partial oxidation of methanol[J]. J Fuel Chem Technol, 2008, 36(3):332-337. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb200803015
    [14]
    BAKER T A, LIU X, FRIEND C M. The mystery of gold's chemical activity:Local bonding, morphology and reactivity of atomic oxygen[J]. Phys Chem Chem Phys, 2010, 13(1):34-46.
    [15]
    ZHANG Q F, LI Y K, LI Z, LI C, YE L, YONG L. Structured nanoporous-gold/Al-fiber:Galvanic deposition preparation and reactivity for the oxidative coupling of methanol to methyl formate[J]. Green Chem, 2014, 16(6):2992-2996. doi: 10.1039/C3GC42561D
    [16]
    WITTSTOCK A, ZIELASEK V, BIENER J, FRIEND C M, BÄUMER M. Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature[J]. Science, 2010, 327(5963):319-322. doi: 10.1126/science.1183591
    [17]
    LU D, ZHANG Y, LIN S, WANG L, WANG C. Synthesis of Pt-Au bimetallic nanoparticles on graphene-carbon nanotube hybrid nanomaterials for nonenzymatic hydrogen peroxide sensor[J]. Talanta, 2013, 112(15):111-116.
    [18]
    WANG R Y, WU Z W, WANG G F, QIN Z F, CHEN C M, DONG M, ZHU H Q, FAN W B, WANG J G. Highly active Au-Pd nanoparticles supported on three-dimensional graphene-carbon nanotube hybrid for selective oxidation of methanol to methyl formate[J]. RSC Adv, 2015, 5(56):44835-44839. doi: 10.1039/C5RA06025G
    [19]
    XU J, WHITE T, LI P, HE C H, YU J G, YUAN W K, HAN Y F. Biphasic Pd-Au alloy catalyst for low-temperature CO oxidation[J]. J Am Chem Soc, 2010, 132(30):10398-10406. doi: 10.1021/ja102617r
    [20]
    TAN L F, CHEN D, LIU H Y, TANG F Q. A silica nanorattle with a mesoporous shell:An ideal nanoreactor for the preparation of tunable gold cores[J]. Adv Mater, 2010, 22(43):4885-4889. doi: 10.1002/adma.201002277
    [21]
    WANG A Q, CHANG C M, MOU C Y. Evolution of catalytic activity of Au-Ag bimetallic nanoparticles on mesoporous support for CO oxidation[J]. J Phys Chem B, 2005, 109(40):18860-18867. doi: 10.1021/jp051530q
    [22]
    LU C L, PRASAD K S, WU H L, HO J A, HUANG M H. Au nanocube-directed fabrication of Au-Pd core-shell nanocrystals with tetrahexahedral, concave octahedral, and octahedral structures and their electrocatalytic activity[J]. J Am Chem Soc, 2010, 132(41):14546-14553. doi: 10.1021/ja105401p
    [23]
    XU J G, WILSON A R, RATHMELL A R, HOWE J, CHI M F, WILEY B J. Synthesis and catalytic properties of Au-Pd nanoflowers[J]. Acs Nano, 2011, 5(8):6119-6127. doi: 10.1021/nn201161m
    [24]
    BULUSHEV D A, YURANOV I, SUVOROVA E I, BUFFAT P A, KIWIMINSKER L. Highly dispersed gold on activated carbon fibers for low-temperature CO oxidation[J]. J Catal, 2004, 224(1):8-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2c1ab8c29b5f884e25513eba0f8e703d
    [25]
    LIU R, YU Y, YOSHIDA K, LI G, JIANG H, ZHANG M, ZHAO F, FUJITA S, ARAI M. Physically and chemically mixed TiO2-supported Pd and Au catalysts:Unexpected synergistic effects on selective hydrogenation of citral in supercritical CO2[J]. J Catal, 2010, 269(1):191-200.
    [26]
    PRITCHARD J, KESAVAN L, PICCININI M, HE Q, TIRUVALAM R, DIMITRATOS N, LOPEZ-SANCHEZ J A, CARLEY A F, EDWARDS J K, KIELY C J, HUTCHINGS G J. Direct synthesis of hydrogen peroxide and benzyl alcohol oxidation using Au-Pd catalysts prepared by sol immobilization[J]. Langmuir, 2010, 26(21):16568-16577. doi: 10.1021/la101597q
    [27]
    HSU C, HUANG C, HAO Y, LIU F. Au/Pd core-shell nanoparticles for enhanced electrocatalytic activity and durability[J]. Electrochem Commun, 2012, 23(1):133-136. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3fe86b998810eb29d8afa18038131899
    [28]
    GUO X N, BRAULT P, ZHI G J, CAILLARD A, JIN G Q, COUTANCEAU C, BARANTON S, GUO X Y. Synergistic combination of plasma sputtered Pd-Au bimetallic nanoparticles for catalytic methane combustion[J]. J Phys Chem C, 2011, 115(22):11240-11246. doi: 10.1021/jp203351p
    [29]
    ZHANG G J, WANG Y E, X WANG, CHEN Y, ZHOU Y, TANG Y, LU L, BAO J, LU T. Preparation of Pd-Au/C catalysts with different alloying degree and their electrocatalytic performance for formic acid oxidation[J]. Appl Catal B:Environ, 2011, 102(3):614-619. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=98a67f8bd5cfe38ad5e495c0d249ff9c
    [30]
    CZELEJ K, CWIEKA K, COLMENARES J C, KURZYDLOWSKI K J, XU Y. Toward a comprehensive understanding of enhanced photocatalytic activity of the bimetallic PdAu/TiO2 catalyst for selective oxidation of methanol to methyl formate[J]. ACS Appl Mater Interfaces, 2017, 9:31825-31833. doi: 10.1021/acsami.7b08158
    [31]
    KOMINAMI H, SUGAHARA H, HASHIMOTO K. Photocatalytic selective oxidation of methanol to methyl formate in gas phase over titanium(Ⅳ) oxide in a flow-type reactor[J]. Catal Commun, 2010, 11(5):426-429. doi: 10.1016/j.catcom.2009.11.014
    [32]
    WOJCIESZAK R, MATEOS-BLANCO R, HAUWAERT D, CARRAZAN S R G, GAIGNEAUX E AND, RUIZ P. Influence of the preparation method on catalytic properties of Pd/TiO2 catalysts in the reaction of partial oxidation of methanol[J]. Curr Catal, 2013, 2:27-34. doi: 10.2174/2211544711302010006
    [33]
    YAN C, DONG Q N, REN J, SUN Y H. Studies on mechanism of methanol decomposition over Pd/CeO2 catalyst[J]. Chem J Chin Univ, 2002, 23(12):2329-2331. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdxxhxxb200212021
    [34]
    BONURA G, CORDARO M, SPADARO L, CANNILLA C, ARENA F, FRUSTERI F. Hybrid Cu-ZnO-ZrO2/H-ZSM-5 system for the direct synthesis of DME by CO2 hydrogenation[J]. Appl Catal B:Environ, 2013, 140-141:16-24. doi: 10.1016/j.apcatb.2013.03.048
    [35]
    HANAOKA T, HATSUTA T, TAGO T, KISHIDAAND M, WAKABAYASHI K. Control of the rhodium particle size of the silica-supported catalysts by using microemulsion[J]. Appl Catal A:Gen, 2000, 190(1/2):291-296.
    [36]
    LOCHAŘ V. FT-IR study of methanol, formaldehyde and methyl formate adsorption on the surface of Mo/Sn oxide catalyst[J]. Appl Catal A:Gen, 2006, 309(1):33-36. doi: 10.1016/j.apcata.2006.04.030
    [37]
    LOCHAŘ V, MACHEK J, TICHY J. Mechanism of selective oxidation of methanol over stannic oxide-molybdenum oxide catalyst[J]. Appl Catal A:Gen, 2002, 228(1):95-101.
    [38]
    BURCHAM L J, BADLANI M, WACHS I E. The origin of the ligand effect in metal oxide catalysts:Novel fixed-bed in situ infrared and kinetic studies during methanol oxidation[J]. J Catal, 2001, 203(1):104-121. doi: 10.1006/jcat.2001.3312
    [39]
    LIU X Y, MADIX R J, FRIEND C M. Unraveling molecular transformations on surfaces:A critical comparison of oxidation reactions on coinage metals[J]. Chem Soc Rev, 2008, 37(10):2243-2261. doi: 10.1039/b800309m
    [40]
    XU B, LIU X, HAUBRICH J, HAUBRICH J, FRIEND C M. Vapour-phase gold-surface-mediated coupling of aldehydes with methanol[J]. Nat Chem, 2010, 2(1):61-65. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e767bdddb079db82c9070bcb0234379e
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (75) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return