Volume 46 Issue 5
May  2018
Turn off MathJax
Article Contents
ZHONG Sheng-wen, HU Xian-chao, YU Yuan, YU Chang-lin, ZHOU Yang. Core-shell hierarchical tungsten carbide composite microspheres towards methanol electrooxidation[J]. Journal of Fuel Chemistry and Technology, 2018, 46(5): 585-591.
Citation: ZHONG Sheng-wen, HU Xian-chao, YU Yuan, YU Chang-lin, ZHOU Yang. Core-shell hierarchical tungsten carbide composite microspheres towards methanol electrooxidation[J]. Journal of Fuel Chemistry and Technology, 2018, 46(5): 585-591.

Core-shell hierarchical tungsten carbide composite microspheres towards methanol electrooxidation

Funds:

National Natural Science Foundation of China 51404110

National Natural Science Foundation of China 21567008

National Natural Science Foundation of China 21506187

Education Department Project Fund of Jiangxi Province GJJ150665

Program of 5511 Talents in Scientific and Technological Innovation of Jiangxi Province 20165BCB18014

Undergraduate Innovation Training Program XZG-16-08-14

More Information
  • Corresponding author: ZHOU Yang, Tel: +86 797 8312341, E-mail: yangzhou1998@126.com
  • Received Date: 2017-10-13
  • Rev Recd Date: 2018-03-16
  • Available Online: 2021-01-23
  • Publish Date: 2018-05-10
  • Tungsten carbides microspheresare synthesized by in situ reduction of ammonium met tungstate microspheres (AMT) precursors as a function of reaction time under CO/CO2 mixture atmosphere. The morphology, size and composition of the as-prepared tungsten carbide microspheres are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Pt nanoparticles with a diameter of 4.6 nm are loaded onto the surface of WC microspheres using a conventional sodium borohydride reduction method. The electro-catalytic activity and stability toward methanol electrooxidation (MOR) are investigated using cyclic voltammetry (CV) and chronoamperometry(CA). The resultant Pt/WCO-6 h catalyst exhibits low onset potential and excellent catalytic performances in comparison to the commercial JM Pt/C and Pt/WC-15 h catalysts. Further investigation shows that besides the synergistic effect between WC and Pt, the existence of WO2 might also play an important role in improving the electro-catalytic activity, indicating the positive effect of the surface oxide on the activity and stability of Pt/WC catalysts towards MOR.
  • loading
  • [1]
    LANG X, SHI M, JIANG Y, CHEN H, MA C. Tungsten carbide/porous carbon core-shell nanocomposites as a catalyst support for methanol oxidation[J]. RSC Adv, 2016, 6(17):13873-13880 doi: 10.1039/C5RA18817B
    [2]
    JING S C, GUO X L, TAN Y W. Branched Pd and Pd-based trimetallic nanocrystals with highly open structures for methanol electrooxidation[J]. J Mater Chem A, 2016, 4(20):7950-7961. doi: 10.1039/C5TA10046A
    [3]
    ZHOU Y, HU X C, ZENG M, FU J X, ZHONG S W. Platinum nanoparticles supported on three-dimensionalgraphene as electro-cacatalyst for methanol oxidation[J]. J Fuel Chem Technol, 2017, 45(2):194-199.
    [4]
    CHEN Z Y, MA C A, ChU Y Q, JIN J M, LIN X, HARDACRE C, LIN W F. WC@meso-Pt core-shell nanostructures for fuel cells[J]. Chem Commun, 2013, 49(99):11677-11679. doi: 10.1039/c3cc46595k
    [5]
    MA C A, LIU W, SHI M, LANG X, CHU Y, CHEN Z, ZHAO D, LIN W, HARDACRE C. Low loading platinum nanoparticles on reduced graphene oxide-supported tungsten carbide crystallites as a highly active electrocatalyst for methanol oxidation[J]. Electrochim Acta, 2013, 114:133-141. doi: 10.1016/j.electacta.2013.10.034
    [6]
    GANESAN R, HAM D J, LEE J S. Platinized mesoporous tungsten carbide for electrochemical methanol oxidation[J]. Electrochem Commun, 2007, 9(10):2576-2579. doi: 10.1016/j.elecom.2007.08.002
    [7]
    MELLINGER Z J, KELLY T G, CHEN J G. Pd-Modified tungsten carbide for methanol electro-oxidation:From surface science studies to electrochemical evaluation[J]. ACS Catal, 2012, 2(5):751-758. doi: 10.1021/cs200620x
    [8]
    ZELLNER M B, CHEN J G. Surface science and electrochemical studies of WC and W2C PVD films as potential electrocatalysts[J]. Catal Today, 2005, 99(3/4):299-307.
    [9]
    WEIGERT E C, ZELLNER M B, STOTTLEMYER A L, CHEN J G. A combined surface science and electrochemical study of tungsten carbides as anode electrocatalysts[J]. Top Catal, 2007, 46(3/4):349-357 doi: 10.1007/s11244-007-9006-7.pdf
    [10]
    WANG Y, SONG S, MARAGOU V, SHEN P K. TSIAKARAS P. High surface area tungsten carbide microspheres as effective Pt catalyst support for oxygen reduction reaction[J]. Appl Catal B:Environ, 2009, 89:223-228. doi: 10.1016/j.apcatb.2008.11.032
    [11]
    GANESAN R, LEE J S. Tungsten carbide microspheres as a noble-metal-economic electrocatalyst for methanol oxidation[J]. Angew Chem, Int Ed, 2005, 44:6557-6560. doi: 10.1002/(ISSN)1521-3773
    [12]
    HAM D J, GANESAN R, LEE J S. Tungsten carbide microsphere as an electrode for cathodic hydrogen evolution from water[J]. Int J Hydrogen Energy, 2008, 33:6865-6872. doi: 10.1016/j.ijhydene.2008.05.045
    [13]
    HUNT S T, NIMMANWUDIPONG T, ROMAN-LESHKOV Y. Engineering non-sintered, metal-terminated tungsten carbide nanoparticles for catalysis[J]. Angew Chem, Int Ed, 2014, 126(20):5231-5236 doi: 10.1002/ange.v126.20
    [14]
    XIAO P, GE X, WANG H, LIU Z, FISHER A, WANG X. Novel molybdenum carbide-tungsten carbide composite nanowires and their electrochemical activation for efficient and stable hydrogen evolution[J]. Adv Funct Mater, 2015, 25(10):1520-1526 doi: 10.1002/adfm.201403633
    [15]
    YANG X, KIMMEL Y C, FU J, KOEL B E, CHEN J G. Activation of tungsten carbide catalysts by use of an oxygen plasma pretreatment[J]. ACS Catal, 2012, 2(5):765-769. doi: 10.1021/cs300081t
    [16]
    KIMMEL Y C, ESPOSITO D V, BIRKMIRE R W, CHEN J G. Effect of surface carbon on the hydrogen evolution reactivity of tungsten carbide (WC) and Pt-modified WC electrocatalysts[J]. Int J Hydrogen Energy, 2012, 37(4):3019-3024. doi: 10.1016/j.ijhydene.2011.11.079
    [17]
    HUNT S T, MILINA M, ALBA-RUBIO A C, HENDON C H, DUMESIC J A, ROMAN-LESHKOV Y. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts[J]. Science, 2016, 352(6288):974-978. doi: 10.1126/science.aad8471
    [18]
    HUNT S T, KOKUMAI T M, ZANCHET D, ROMANLESHKOV Y. Alloying tungsten carbide nanoparticles with tantalum:Impact on electrochemical oxidation resistance and hydrogen evolution activity[J]. J Phys Chem C, 2015, 119(24). http://cn.bing.com/academic/profile?id=b15fb4d9cc782aea653ca3ead0da4452&encoded=0&v=paper_preview&mkt=zh-cn
    [19]
    HOOR F S, AHMED M F, MAYANNA S M. Methanol oxidative fuel cell:Electrochemical synthesis and characterization of low-priced WO3-Pt anode material[J]. J Solid State Electrochem, 2004, 8(8):572-576. https://www.researchgate.net/publication/244033746_Methanol_oxidative_fuel_cell_Electrochemical_synthesis_and_characterization_of_low-priced_WO3-Pt_anode_material
    [20]
    YE J L, LIU J G, ZOU ZG, GU J, YU T. Preparation of Pt supported on WO3-C with enhanced catalytic activity by microwave-pyrolysis method[J]. J Power Sources, 2010, 195(9):2633-2637. doi: 10.1016/j.jpowsour.2009.11.055
    [21]
    ZHOU Y, HU X C, LIU XH, WEN H R. Core-shell hierarchical WO2/WO3 microspheres as an electrocatalyst support for methanol electrooxidation[J]. Chem Commun, 2015, 51:15297-15299. doi: 10.1039/C5CC06603D
    [22]
    ZHOU Y, HU X C, XIAO Y J, SHU Q. Platinum nanoparticles supported on hollow mesoporous tungsten trioxide microsphere as electrocatalyst for methanol oxidation[J]. Electrochim Acta, 2013, 111:588-592. doi: 10.1016/j.electacta.2013.08.057
    [23]
    GANESAN R, LEE J S. Tungsten carbide microspheres as a noble-metal-economic electrocatalyst for methanol oxidation[J]. Angew Chem, Int Ed, 2005, 44(40):6557-6560. doi: 10.1002/(ISSN)1521-3773
    [24]
    MA C A, BRANDON N, LI G. Preparation and formation mechanism of hollow microspherical tungsten carbide with mesoporosity[J]. J Phys Chem C, 2007, 111(26):9504-9508. doi: 10.1021/jp072378q
    [25]
    KATRIB A, HEMMING F, WEHRER P, HILAIRE L, MAIRE G. Surface characterization and catalytic properties of supported tungsten and platinum-tungsten carbide and oxycarbide[J]. Top Catal, 1994, 1(1/2):75-85. doi: 10.1007/BF01379577.pdf
    [26]
    LANG X, SHI M, CHU Y, LIU W, CHEN Z, MA C. Microwave-assisted synthesis of Pt-WC/TiO2 in ionic liquid and its application for methanol oxidation[J]. J Solid State Electrochem, 2013, 17(9):2401-2408. doi: 10.1007/s10008-013-2060-0
    [28]
    LIM B, JIANG M, CAMARGO P H C, CHO E C, TAO J, LU X, ZHU Y, XIA Y. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction[J]. Science, 2009, 324(5932):1302. doi: 10.1126/science.1170377
    [28]
    CHEN S, WEI Z, QI X Q, DONG L, GUO Y G, WAN L, SHAO Z, LI L. Nanostructured polyaniline-decorated Pt/C@PANI core-shell catalyst with enhanced durability and activity[J]. J Am Chem Soc, 2012, 134(32):13252. doi: 10.1021/ja306501x
    [29]
    GUO S, DONG S, WANG E. Constructing carbon nanotube/Pt nanoparticle hybrids using an imidazolium-salt-based ionic liquid as a linker[J]. Adv Mater, 2010, 22(11):1269-1272. doi: 10.1002/adma.v22:11
    [30]
    CHANG J, FENG L, LIU C, XING W, HU X. Ni2P enhances the activity and durability of the Pt anode catalyst in direct methanol fuel cells[J]. Energy Environ Sci, 2014, 7(5):1628-1632. doi: 10.1039/c4ee00100a
    [31]
    MELLINGER Z J, KELLY T G, CHEN J G G. Pd-Modified tungsten carbide for methanol electro-oxidation:From surface science studies to electrochemical evaluation[J]. ACS Catal, 2012, 2(5):751-758. doi: 10.1021/cs200620x
    [32]
    KELLY T G, STOTTLEMYER A L, REN H, CHEN J G. Comparison of O-H, C-H, and C-O bond scission sequence of methanol on tungsten carbide surfaces modified by Ni, Rh, and Au[J]. J Phys Chem C, 2011, 115(14):6644-6650. doi: 10.1021/jp112006v
    [33]
    AND H H H, CHEN J G, AND K K, LAVIN J G. Potential application of tungsten carbides as electrocatalysts. 1. Decomposition of methanol over carbide-modified W(111)[J]. J Phys Chem B, 2001, 105(41):10037-10044. doi: 10.1021/jp0116196
    [34]
    TSEUNG A C C, CHEN K Y. Hydrogen spill-over effect on Pt/WO3 anode catalysts[J]. Catal Today, 1997, 38(4):439-443. doi: 10.1016/S0920-5861(97)00053-9
    [35]
    SHEN P K, CHEN K Y, TSEUNG A C C. Performance of Co-electrodeposited Pt-Ru/WO3 electrodes for the electrooxidation of formic-acid at room-temperature[J]. J Electroanal Chem, 1995, 389(1/2):223-225. https://www.sciencedirect.com/science/article/pii/002207289503974L
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (94) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return