Volume 47 Issue 10
Oct.  2019
Turn off MathJax
Article Contents
WU Jian-bing, ZHANG Xiao-yan, SUN Ze-ping, LI Hai-tao, ZHOU Wei, ZHAO Yong-xiang. Effect of NaOH content for the properties of HZSM-5 zeolites and its catalytic performance on gas phase carbonylation of dimethoxymethane[J]. Journal of Fuel Chemistry and Technology, 2019, 47(10): 1226-1234.
Citation: WU Jian-bing, ZHANG Xiao-yan, SUN Ze-ping, LI Hai-tao, ZHOU Wei, ZHAO Yong-xiang. Effect of NaOH content for the properties of HZSM-5 zeolites and its catalytic performance on gas phase carbonylation of dimethoxymethane[J]. Journal of Fuel Chemistry and Technology, 2019, 47(10): 1226-1234.

Effect of NaOH content for the properties of HZSM-5 zeolites and its catalytic performance on gas phase carbonylation of dimethoxymethane

Funds:

the National Natural Science Foundation of China 21703127

More Information
  • Corresponding author: WU Jian-bing, Tel: 15234060735, E-mail: wujianbing@sxu.edu.cn; ZHAO Yong-xiang, E-mail: yxzhao@sxu.edu.cn
  • Received Date: 2019-07-25
  • Rev Recd Date: 2019-08-28
  • Available Online: 2021-01-23
  • Publish Date: 2019-10-10
  • A series of ZSM-5 zeolites were prepared by changing the NaOH content, and their catalytic performance on the vapor-phase carbonylation of dimethoxymethane (DMM) to synthesize methyl methoxyacetate (MMAc) was investigated detailedly. The results indicate that the ZSM-5 zeolite prepared under the 0.81% NaOH content shows the best catalytic performance. Various characterization results, including BET, 27Al NMR, NH3-TPD and Py-FTIR, illustrate that medium-strong Brønsted acid sites and mesoporous volume are the chief factors in promoting carbonylation of DMM over ZSM-5 zeolite, which can be effectively regulated by changing NaOH content. The increase of medium-strong Brønsted acid sites can improve DMM conversion by providing more active acid sites; the introduction of mesoporous can increase MMAc selectivity by shortening the product diffusion path, weakening steric constraint of pore walls and suppressing parts of side reactions. Density functional theory was further carried out to study the interaction between DMM and ZSM-5 zeolite. The calculated results find that intermediate species ZOCH2OCH3 is formed firstly during DMM decomposition. Based on this, a possible formation mechanism of MMAc was then proposed.
  • loading
  • [1]
    CELIK F E, KIM T J, MLINAR A N, BELL A T. An investigation into the mechanism and kinetics of dimethoxymethane carbonylation over FAU and MFI zeolites[J]. J Catal, 2010, 274(2):150-162. doi: 10.1016/j.jcat.2010.06.015
    [2]
    石磊, 姚杰, 朱文良, 刘中民.磺酸树脂催化甲缩醛一步羰化制高附加值甲氧基乙酸甲酯[J].化工学报, 2017, 68(10):3739-3746. http://d.old.wanfangdata.com.cn/Periodical/hgxb201710010

    SHI Lei, YAO Jie, ZHU Wen-liang, LIU Zhong-min. Efficient sulfonic acid resin catalysts for carbonylation of dimethoxymethane to value-added methyl methoxyacetate[J]. CIESC J, 2017, 68(10):3739-3746. http://d.old.wanfangdata.com.cn/Periodical/hgxb201710010
    [3]
    沈鑫权, 刘洪忠, 高志贤, 吾满江·艾力.甲缩醛与甲酸偶联合成甲氧基乙酸甲酯[J].天然气化工, 2012, 37(6):37-39. doi: 10.3969/j.issn.1001-9219.2012.06.009

    SHEN Xin-quan, LIU Hong-zhong, GAO Zhi-xian, WU Man-jiang Eli. Synthesis of methy methoxy acetate from methylal and formic acid[J]. Nat Gas Chem Ind, 2012, 37(6):37-39. doi: 10.3969/j.issn.1001-9219.2012.06.009
    [4]
    杜碧林, 储伟, 于作龙.甲酸甲酯与三聚甲醛偶联合成乙醇酸甲酯*Ⅱ.硫酸/金属羰基化合物对收率的影响[J].天然气化工, 1998, 23(3):34-36.

    DU Bi-lin, CHU Wei, YU Zuo-long. Synthesis of methyl glycolate by coupling of methyl formate with trioxane*Ⅱ. Effect of sulfuric acid and metal carbonyl compound on yield[J]. Nat Gas Chem Ind, 1998, 23(3):34-36.
    [5]
    贺德华, 黄卫国, 刘金尧.同时合成羟基乙酸甲脂和甲氧基乙酸甲脂的方法: 中国, 1180067A[P]. 2001-01-10.

    HE De-hua, HUANG Wei-guo, LIU Jing-yao. Method for simultaneously synthesizing glycolic acid methyl ester and methoxyacetic acid methyl ester: CN, 1180067A[P]. 2001-01-10.
    [6]
    HE D H, HUANG W G, LIU J Y. The activity of H4SiW12O40 for the coupling of formaldehyde and methyl formate to methyl glycolate and methyl methoxy acetate[J]. J Mol Catal A:Chem, 1999, 145:335-338. doi: 10.1016/S1381-1169(99)00166-1
    [7]
    LIU S P, ZHU W L, SHI L, LIU H C, LIU Y, NI Y M, LI L N, ZHOU H, XU S T, HE Y L, LIU Z M. A highly efficient Nafion-H catalyst for vapour phase carbonylation of dimethoxymethane[J]. RSC, 2014, 4(77):40999-41002. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2891f5ef3bf10dfac561e33141ff6722
    [8]
    LIU S P, ZHU W L, SHI L, LIU H C, LIU Y, NI Y M, LI L N, ZHOU H, XU S T, HE Y L, LIU Z M. Activity enhancement of Nafion resin:Vapor-phase carbonylation of dimethoxymethane over Nafion-silica composite[J]. Appl Catal A:Gen, 2015, 497:153-159. doi: 10.1016/j.apcata.2015.03.010
    [9]
    BADMAEV S D, POTEMIN D I, PECHENKIN A A, VOLKOVA G G, SOBYANIN V A, PAMON A V N. Gas-phase carbonylation of dimethoxymethane to methyl methoxyacetate over the Cs2.5H0.5PW12O40 catalyst[J]. Dokl Phys Chem, 2016, 468(2):85-88. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f9ac67e1cfd5c04f1010f03f17ed7078
    [10]
    CELIK F E, KIM T J, BELL A T. Vapor-phase carbonylation of dimethoxymethane over H-Faujasite[J]. Angew Chem Int Ed, 2009, 48(26):4813-4815. doi: 10.1002/anie.200900464
    [11]
    CELIK F E, KIM T J, BELL A T. Effect of zeolite framework type and Si/Al ratio on dimethoxymethane carbonylation[J]. J Catal, 2010, 270(1):185-195. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2910f034e5d23050ca81aa68a7e03bfd
    [12]
    CHEUG P, BHAN A, SUNLEY G J, IGLESIA E. Selective carbonylation of dimethyl ether to methyl acetate catalyzed by acidic zeolites[J]. Angew Chem Int Ed, 2006, 45:1617-1620. doi: 10.1002/anie.200503898
    [13]
    BARRI S A I, CHADWICK D. Carbonylation of formaldehyde with zeolite catalysts[J]. Catal Lett, 2011, 141:749-753. doi: 10.1007/s10562-011-0616-0
    [14]
    REDDY J K, MOTOKURA K, KOYAMA T, MIYAJI A, BABA T. Effect of morphology and particle size of ZSM-5 on catalytic performance for ethylene conversion and heptane cracking[J]. J Catal, 2012, 289:53-61. doi: 10.1016/j.jcat.2012.01.014
    [15]
    KIM J, CHOI M, RYONG R. Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process[J]. J Catal, 2010, 269(1):219-228. doi: 10.1016/j.jcat.2009.11.009
    [16]
    YOKOI T, MOCHIZUKI H, NAMBA S, KONDO J K, TASUMI T. Control of the Al distribution in the framework of ZSM-5 zeolite and its evaluation by solid-state NMR technique and catalytic properties[J]. J Phys Chem C, 2015, 119:15303-15315. doi: 10.1021/acs.jpcc.5b03289
    [17]
    LIANG T Y, CHEN J L, QIN Z F, LI J F, WANG P F, WANG S, WANG G F, DONG M, FAN W B, WANG J G. Conversion of methanol to olefins over H-ZSM-5 zeolite:Reaction pathway is related to the framework aluminum siting[J]. ACS Catal, 2016, 6(11):7311-7325. doi: 10.1021/acscatal.6b01771
    [18]
    FRISCH M L, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09[CP]. Revision A.02, Gaussian Inc: allingford, CT, 2009.
    [19]
    RAVISHANKAR R, KIRSCHHOCKC, SCHOEMANB J, VANOPPENP, GROBETP J, STORCK S, MAIER W F, MARTENS J A, SCHRYVER F C D, JACOBS P A. Physicochemical characterization of silicalite-1 nanophase material[J]. J Phys Chem B, 1998, 102:2633-2639. doi: 10.1021/jp973147u
    [20]
    潘文雅, 黄亮, 秦枫, 庄岩, 李雪梅, 马建学, 沈伟, 徐华龙.甘油脱水合成丙烯醛ZSM-5催化剂的孔结构和酸性调控[J].物理化学学报, 2015, 31(5):965-972. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201505021

    PAN Wen-ya, HUANG Liang, QIN Feng, ZHUANG Yan, LI Xue-mei, MA Jian-xue, SHEN Wei, XU Hua-long. Regulation of pore structure and acidity of a ZSM-5 catalyst for dehydration of glycerol to Acrolein[J]. Acta Phys-Chim Sin, 2015, 31(5):965-972. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201505021
    [21]
    GROEN J C, ZHUW D, BROUWER S, HUYNINK S J, KAPTEIJIN F, MOULIJN J A, PEREZ-RAMIREZ J. Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication[J]. J Am Chem Soc, 2007, 129(2):355-360. doi: 10.1021/ja065737o
    [22]
    KLINOWSKI J. Solid-state NMR studies of molecular sieve catalysts[J]. Chem Rev, 1991, 91:1459-1479. doi: 10.1021/cr00007a010
    [23]
    XU T, ZHANG Q H, SONG H, WANG Y. Fluoride-treated H-ZSM-5 as a highly selective and stable catalyst for the production of propylene from methyl halides[J]. J Catal, 2012, 295:232-241. doi: 10.1016/j.jcat.2012.08.014
    [24]
    PONCELET G, DUBRU M L. An infrared study of surface acidity of germanic near-faujasite zeolite by pyridine adsorption[J]. J Catal, 1978, 52:321-331. doi: 10.1016/0021-9517(78)90146-X
    [25]
    ANDRES G T, AGUSTIN M. Direct synthesis of DME from syngas on hybrid Cu-Zn-Al/ZSM-5 catalysts:New insights into the role of zeolite acidity[J]. Appl Catal A:Gen, 2012, 411-412:170-179. doi: 10.1016/j.apcata.2011.10.036
    [26]
    DING X, GENG S, LI C Y, YANG C H, WANG G H. Effect of acid density of HZSM-5 on the oligomerization of ethylene in FCC dry gas[J]. J Nat Gas Chem, 2009, 18:156-160. doi: 10.1016/S1003-9953(08)60100-0
    [27]
    CHESTER A W, DEROUANE E G. Zeolites Characterization and Catalysis:A Tutorial[M]. Springer-Verlag New York Inc:New York, 2009:358-365.
    [28]
    LIETZ G, SCHNABEL K H, PEUKER C. GROSS T, STOREK W, VOLTER J. Modifications of H-ZSM-5 Catalysts by NaOH Treatment[J]. J Catal, 1994, 148:562-568. doi: 10.1006/jcat.1994.1242
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (168) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return