Volume 48 Issue 10
Oct.  2020
Turn off MathJax
Article Contents
LI Zhan-ku, WANG Hai-tao, YAN Hong-lei, YAN Jing-chong, LEI Zhi-ping, REN Shi-biao, WANG Zhi-cai, KANG Shi-gang, SHUI Heng-fu. Simulation of hydrogen bonds in low-rank coals with lignite-related complexes using dispersion corrected density functional theory[J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1153-1159.
Citation: LI Zhan-ku, WANG Hai-tao, YAN Hong-lei, YAN Jing-chong, LEI Zhi-ping, REN Shi-biao, WANG Zhi-cai, KANG Shi-gang, SHUI Heng-fu. Simulation of hydrogen bonds in low-rank coals with lignite-related complexes using dispersion corrected density functional theory[J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1153-1159.

Simulation of hydrogen bonds in low-rank coals with lignite-related complexes using dispersion corrected density functional theory

Funds:

the National Key Research and Development Program of China 2018YFB0604600

the Natural Science Foundation of China 21776001

the Natural Science Foundation of China 21878001

the Natural Science Foundation of China U1710114

the Natural Science Foundation of China 21875001

the Natural Science Foundation of China 21808002

Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Anhui University of Technology CHV19-01

More Information
  • Corresponding author: LI Zhan-ku,E-mail:li_zhanku@163.com; SHUI Heng-fu,E-mail:shhf@ahut.edu.cn
  • Received Date: 2020-07-01
  • Rev Recd Date: 2020-09-06
  • Available Online: 2021-01-23
  • Publish Date: 2020-10-10
  • Phenol…phenol, phenol…benzene, phenol…oxydibenzene, phenol…quinoline, and benzoic acid…benzoic acid were selected as lignite-related complexes to investigate different hydrogen bonds formed by self-associated OH, OH-π, OH-ether O, OH-N, and COOH-COOH using density functional theory with dispersion correction, respectively. Moreover, the effects of substituents (CH3-, CH3O-, OH-, NH2-, COOH-, and NO2-) in donors on the hydrogen bonds were investigated. Geometry optimization, energy, Mulliken population, and frequency of all the complexes were calculated. It can be seen from optimized structures that there indeed are hydrogen bonds in the different complexes. Bond lengths of all O-H bonds in the different complexes become longer than that of free OH in phenol, which implies that intermolecular interactions exist in all the complexes. Among of them, bond lengths of O-H bonds in benzoic acid…benzoic acid are the longest. In addition, charge transfer can be observed via Mulliken population. Based on frequency analysis, all O-H stretching vibrations have obvious red shift, especially O-H bonds in benzoic acid…benzoic acid and phenol…quinoline, which gives evidence of using the infrared spectroscopy to analyze hydroxyl groups of coals. According to bond energies, the strength of the different hydrogen bonds decreases in the order: COOH-COOH > OH-N > self-associated OH ≈ OH-ether O > OH-π, which is consistent with the reported experimental results. Different substituents have distinct effects on the hydrogen bonds.
  • loading
  • [1]
    LARSEN J W, GREEN T K, KOVAC J. The nature of the macromolecular network structure of bituminous coals[J]. J Org Chem, 1985, 50(24):4729-4735. doi: 10.1021/jo00224a014
    [2]
    LARSEN J W, SHAWVER S. Solvent swelling studies of two low-rank coals[J]. Energy Fuels, 1990, 4(1):74-77. doi: 10.1021/ef00019a013
    [3]
    XIAO J, ZHAO Y P, FAN X, CAO J P, KANG G J, ZHAO W, WEI X Y. Hydrogen bonding interactions between the organic oxygen/nitrogen monomers of lignite and water molecules:A DFT and AIM study[J]. Fuel Process Technol, 2017, 168:58-64. doi: 10.1016/j.fuproc.2017.09.001
    [4]
    LI Z K, YAN H L, YAN J C, WANG Z C, LEI Z P, REN S B, SHUI H F. Drying and depolymerization technologies of Zhaotong lignite:A review[J]. Fuel Process Technol, 2019, 186:88-98. doi: 10.1016/j.fuproc.2019.01.002
    [5]
    LI D, LI W, CHEN H, LI B. The adjustment of hydrogen bonds and its effect on pyrolysis property of coal[J]. Fuel Process Technol, 2004, 85(8/10):815-825. http://www.sciencedirect.com/science/article/pii/S037838200300287X
    [6]
    LI H J, LI X H, FENG J, LI W Y. Effect of preheating treatment on oxygen migration during lignite pyrolysis[J]. J Fuel Chem Technol, 2019, 47(1):1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201901001
    [7]
    HOU R, BAI Z, ZHENG H, FENG Z, YE D, GUO Z, KONG L, BAI J, LI W. Behaviors of hydrogen bonds formed by lignite and aromatic solvents in direct coal liquefaction:Combination analysis of density functional theory and experimental methods[J]. Fuel, 2020, 265:117011. doi: 10.1016/j.fuel.2020.117011
    [8]
    LEI Z P, WU L, ZHANG Y Q, SHUI H F, WANG Z C, REN S B. Effect of noncovalent bonds on the successive sequential extraction of Xianfeng lignite[J]. Fuel Process Technol, 2013, 111:118-122. doi: 10.1016/j.fuproc.2013.02.004
    [9]
    LEI Z P, CHENG L L, ZHANG S F, ZHANG Y Q, SHUI H F, REN S B, WANG Z C. Dissolution performance of coals in ionic liquid 1-butyl-3-methyl-imidazolium chloride[J]. Fuel Process Technol, 2015, 129:222-226. doi: 10.1016/j.fuproc.2014.09.021
    [10]
    CHEN C, GAO J S, YAN Y J. Observation of the type of hydrogen bonds in coal by FT-IR[J]. Energy Fuels, 1998, 12(3):446-449. doi: 10.1021/ef970100z
    [11]
    PAINTER P C, SOBKOWIAK M, YOUTCHEFF J. FT-IR. study of hydrogen bonding in coal[J]. Fuel, 1987, 66(7):973-978. doi: 10.1016/0016-2361(87)90338-3
    [12]
    MIURA K, MAE K, HASEGAWA I, CHEN H, KUMANO A, TAMURA K. Estimation of hydrogen bond distributions formed between coal and polar solvents using in situ IR technique[J]. Energy Fuels, 2002, 16(1):23-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=J-STAGE_219252
    [13]
    MIURA K, MAE K, LI W, KUSAKAWA T, MOROZUMI F, KUMANO A. Estimation of hydrogen bond distribution in coal through the analysis of OH stretching bands in diffuse reflectance infrared spectrum measured by in-situ technique[J]. Energy Fuels, 2001, 15(3):599-610. http://www.istic.ac.cn/suoguan/detailed.htm?dbname=xw_qk&wid=0220071119244056
    [14]
    HAO P Y, MENG Y J, ZENG F G, YAN T T, XU G B. Quantitative study of chemical structures of different rank coals based on infrared spectroscopy[J]. Spectrosc Spect Anal, 2020, 40(3):787-792. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx202003022
    [15]
    HUANG X, CHU W, SUN W J, JIANG C F, FENG Y Y, XUE Y. Investigation of oxygen-containing group promotion effect on CO2-coal interaction by density functional theory[J]. Appl Surf Sci, 2014, 299:162-169. doi: 10.1016/j.apsusc.2014.01.205
    [16]
    LI G Y, XIE Q A, ZHANG H, GUO R, WANG F, LIANG Y H. Pyrolysis mechanism of metal-ion-exchanged lignite:A combined reactive force field and density functional theory study[J]. Energy Fuels, 2014, 28(8):5373-5381. doi: 10.1021/ef501156b
    [17]
    LI L, FAN H, HU H. A theoretical study on bond dissociation enthalpies of coal based model compounds[J]. Fuel, 2015, 153:70-77. doi: 10.1016/j.fuel.2015.02.088
    [18]
    LI G Y, WANG F, WANG J P, LI Y Y, LI A Q, LIANG Y H. ReaxFF and DFT study on the sulfur transformation mechanism during the oxidation process of lignite[J]. Fuel, 2016, 181:238-247. doi: 10.1016/j.fuel.2016.04.068
    [19]
    LIU J, WU J, ZHU J, WANG Z, ZHOU J, CEN K. Removal of oxygen functional groups in lignite by hydrothermal dewatering:An experimental and DFT study[J]. Fuel, 2016, 178:85-92. doi: 10.1016/j.fuel.2016.03.045
    [20]
    WU J, LIU J, YUAN S, WANG Z, ZHOU J, CEN K. Theoretical investigation of noncovalent interactions between low-rank coal and water[J]. Energy Fuels, 2016, 30(9):7118-7124. doi: 10.1021/acs.energyfuels.6b01377
    [21]
    LI L, FAN H, HU H. Distribution of hydroxyl group in coal structure:A theoretical investigation[J]. Fuel, 2017, 189:195-202. doi: 10.1016/j.fuel.2016.10.091
    [22]
    SUN T, WANG Y B. Calculation of the binding energies of different types of hydrogen bonds using GGA density functional and its long-range, empirical dispersion correction methods[J]. Acta Phys-Chim Sin, 2011, 27(11):2553-2558. doi: 10.3866/PKU.WHXB20111017
    [23]
    JANESKO B G. Modeling interactions between lignocellulose and ionic liquids using DFT-D[J]. Phys Chem Chem Phys, 2011, 13(23):11393-11401. doi: 10.1039/c1cp20072k
    [24]
    JOSA D, RODRÍGUEZ-OTERO J, CABALEIRO-LAGO E M, RELLÁN-PIÑEIRO M. Analysis of the performance of DFT-D, M05-2X and M06-2X functionals for studying π-π interactions[J]. Chem Phys Lett, 2013, 557:170-175. doi: 10.1016/j.cplett.2012.12.017
    [25]
    LI B, LIU S, GUO J, ZHANG L. Interaction between low rank coal and kaolinite particles:A DFT simulation[J]. Appl Surf Sci, 2018, 456:215-220. doi: 10.1016/j.apsusc.2018.06.121
    [26]
    LI Z K, ZONG Z M, YAN H L, WANG Y G, WEI X Y, SHI D L, ZHAO Y P, ZHAO C L, YANG Z S, FAN X. Alkanolysis simulation of lignite-related model compounds using density functional theory[J]. Fuel, 2014, 120:158-162. doi: 10.1016/j.fuel.2013.12.009
    [27]
    ZHANG R, XING Y, XIA Y, LUO J, TAN J, RONG G, GUI X. New insight into surface wetting of coal with varying coalification degree:An experimental and molecular dynamics simulation study[J]. Appl Surf Sci, 2020, 511:145610. doi: 10.1016/j.apsusc.2020.145610
    [28]
    STEINER T. The hydrogen bond in the solid state[J]. Angew Chem Int Ed, 2002, 41:48-76. doi: 10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U
    [29]
    LIU F J, WEI X Y, GUI J, WANG Y G, LI P, ZONG Z M. Characterization of biomarkers and structural features of condensed aromatics in Xianfeng lignite[J]. Energy Fuels, 2013, 27(12):7369-7378. doi: 10.1021/ef402027g
    [30]
    LI Z K, WEI X Y, YAN H L, ZONG Z M. Insight into the structural features of Zhaotong lignite using multiple techniques[J]. Fuel, 2015, 153:176-182. doi: 10.1016/j.fuel.2015.02.117
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (120) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return